AN
o L
emiconductor i
Research U IVERSITY
Corporation Y IRGINIA

Core Fuzzing - A Versatile Security
Verification Platform

Alenkruth Krishnan Murali, Ashish Venkat
University of Virginia

CADT-Task #3105.001: ProxyVM - A Scalable and Retargetable Compiler
Framework for Privacy-Aware Proxy Workload Generation

A
A

N

i AIE
Outline (AvE
VIRGINIA

* Motivation and Key Idea
* Need for Security Verification
« Current Security Verification Techniques

e Core Fuzzing - Key Idea
* Thought Experiments

Alenkruth Krishnan Murali - Task #3105.001 2

Need for Security Verification ____
7VIRGINIA

* Modern architectures are complex

* Verification time increases, effort increases

 Endless stream of hardware and software attacks
~\
o0 {/
4
/4

* Robust and reliable verification techniques are necessary

@ Alenkruth Krishnan Murali - Task #3105.001 3

Current Security Verification Techniques -__

7VIRGINIA
* Formal verification based approaches

 Static/Compile time methods
* Verification time « Design/Software complexity

* Hardware security verification
« Different abstraction levels - software to gates
« Convert design to (formal) verification tool language - additional step

 Black-Box CPU verification
 Directed test generation through fuzzing
* Needs a formal specification of the ISA - additional step

@ Alenkruth Krishnan Murali - Task #3105.001 4

Core Fuzzing - Key ldea (AR
VIRGINIA

» Core fuzzing is a flexible, fast, and automatic security verification
framework.

» Key idea - Fuzz the microarchitecture of the processor during runtime
while keeping the test program constant.

« Based on software fuzzing.

* Fuzzing during runtime exposes previously unseen execution paths
and microarchitectural side-effects.

* |dentify vulnerabilities in SW and HW by monitoring information flow.

@ Alenkruth Krishnan Murali - Task #3105.001 5

Core Fuzzing - Thought Experiment 1 i

[UNIVERSITY
7VIRGINIA
Experiment 1:
« Branch is not immediately followed by Spectre PoC code:
load
« Machine with unlimited execution units if (index <array_size){
and 100 entry ROB // 200 ALU operations without loads/stores
 Due to a smaller window, the load is dummyl = array2[arrayl[index]];
never speculatively executed }

* |Increase ROB size to 250.
 Increases the number of in-flight

instructions _ _ _

- Upon Im{szplemélati?n, the brar%ch + e « Varying ROB size exposes bug in
speculated load act as a spectre gadge "
leaking information through a sidé channel software exploiting the hardware
(cache « Not apparent during normal execution

@ Alenkruth Krishnan Murali - Task #3105.001 6

Core Fuzzing - Thought Experiment 2 U Igi%%sm
7VIRGINIA

Experiment 2:

 Test program containing a secret It (secret == "hello"){

dependent operation running on a result=a " b; (A)
machine with 10 multipliers }

« Reduce the number of multiplier else (secret == “world”){
ports to 1 result=a/b; (B)

« Secret is leaked implicitly through the }
execution time of instruction C.

. —_ * o
 Such scenarios can occur dummy=a * b; (C)
 |n a SMT machine
 Resource constrained devices

e« (Cannot be noticed unless tested on

diverse microarchitectures

@ Alenkruth Krishnan Murali - Task #3105.001

7

Core Fuzzing - Thought Experiment 3

Experiment 3:

0000000080002a10 <secret>:
80002a10: 2790
80002al12: 8000

00000000800a6a90 <dummy>:
800a6a90: 8000

 Reduce the number of sets
from 16 to 8.

« Secret data and attacker data
contend for the same cache line.

 Resource contention can be used

to deny service.

» Branch History Tables are
similarly vulnerable.

0001

1001

TAG

DATA

microarchitecture

001

Al
e

UNIVERSITY

7VIRGINIA

TAG

DATA

* Not apparent during normal code
inspection or during testing on a fixed

@ SRC

Alenkruth Krishnan Murali - Task #3105.001 8

Why is Core Fuzzing Better? UNvER
7VIRGINIA

» Given a design specification, the tool automatically fuzzes to find a
representative sample of possible valid microarchitectural
configurations

* Invalid configurations
» Cache line with odd number of ways, unpipelined processor, static branch prediction, ...
« Security-aware design space exploration

« Hardware-based verification tool - faster than static methods

« Software bugs and hardware bugs are exposed
 Vulnerabilities in microarchitectural configurations
* Vulnerabilities in software that lead to security policy violation

@ Alenkruth Krishnan Murali - Task #3105.001 9

| LA
Outline .
VIRGINIA

* Overview of Core Fuzzing
« Components of the Framework
« Reconfigurable core
« Dynamic Information Flow Tracking(DIFT) in the reconfigurable core
* Oracle
* Methodology

@ Alenkruth Krishnan Murali - Task #3105.001 10

Core Fuzzing - Framework

* Three components
* Reconfigurable core

* Oracle
» Configurable security policy

 Oracle and reconfigurable core in
master/subordinate arrangement

« Reconfigurable RISC-V BOOM Core

* Implements Dynamic Information Flow Tracking
(DIFT) at module interfaces

» Oracle monitors execution on reconfigurable
core and implements the fuzzer

* The configurable security policy is provided by
the user
 List of acceptable violations
« List of acceptable leakage channels

Configurable Security

Policy

Oracle

Reconfigurable Core

Al
SlliE

[UNIVERSITY
IV/IRGINIA

Test Program

_‘
_‘

Coverage Report

Microarchitectural
Sensitivity Report

@ SRC

Alenkruth Krishnan Murali - Task #3105.001 11

A
T

N

S - AiliE
Core Fuzzing - Reconfigurable Core =

[(2 Gache } IVIRGINIA

ﬁ * Red - DIFT tag creation and
revoke

Buffer

I,J « Green - DIFT tag checker and
e e pltp et | [1 Sl propagation

Buffer _

H
PQ RE

z| 3 5 &
& 3

—>E [s)
5

R * Modules with DIFT units are
r reconfigurable

* Oracle - interfaced with the

ZON 1C
JL JL Tf reconfigurable core

[- IFT Tag Checker/Propagation Inter-
B - IFT Tag Creation/Revoke processor

Oracle - RV64I Core Interrupt
—>» - Data/Instruction Bus Handler

reconfigure [€— [configureCSR [63:0] |

Configurable
—» -1 bit Signal Security Contract

Pipeline of the reconfigurable BOOM core
@ SRC 7" 9

https://boom-core.org Alenkruth Krishnan Murali - Task #3105.001 12

Core Fuzzing - Reconfigurable Core U I}@%ﬁy

[(= | » Configurable modules

« Branch predictor, instruction window,
execution ports, issue width, cache
organization....

* Reconfigurations
* triggered by the oracle
 dedicated custom CSR(s)

* DIFT units enforce the configurable
security contract

* The reconfigurable core populates
e =~ custom CSRs with information flow
B T Tg Crestoniooke womsncos el fOr the oracle to monitor

—>» - Data/Instruction Bus Handler

—>» -1 bit Signal Security Contract

@ Alenkruth Krishnan Murali - Task #3105.001

13

Core Fuzzing - DIFT i

[UNIVERSITY

7VIRGINIA

L2 Cache

* |nitial tagging - Red

<~ « Data/lnstruction entering the caches
ey [=z * Propagation and checking units -

Rename/

Fetch Allocate/
Pre- P gﬁ:fc:r B)W'ge Retire &
Pecode Reorder
5 Buffer _
g

H >

Green

 Check interaction of data with different
tags

€
L reconfigure

* Propagates the tags based on
o | e interactions

[- IFT Tag Checker/Propagation
B - IFT Tag Creation/Revoke
—>» - Data/Instruction Bus

—>» -1 bit Signal

@ SRC

I 1 JT Tag revoke - Red

* |nstruction retirement

Inter-
processor
Oracle - RV64l Core Interrupt
Configurable Handler
Security Contract

Alenkruth Krishnan Murali - Task #3105.001 14

A

Core Fuzzing - Oracle AE
7VIRGINIA
[(==]| « Brain of the Core Fuzzing framework

i ‘ ﬁ , * RISC-V core supporting privileged

ISA and interprocessor interrupts

» Sets up the test program and the
reconfigurable core

* The fuzzer provides a initial list of
microarchitectural configurations for
a given design specification

[- IFT Tag Checker/Propagation
B - IFT Tag Creation/Revoke
—>» - Data/Instruction Bus

—>» -1 bit Signal

@ Alenkruth Krishnan Murali - Task #3105.001 15

Oracle - RV64I| Core Interrupt

ing - AiiiE
Core Fuzzing - Oracle AE

7VIRGINIA

» Continuously probes the custom
CSRs and Hardware Performance

Counters (HPCs)

» Uses probed values to trigger
reconfigurations

* Fuzzer uses probed values to decide
the next configuration

 End of the run

« Report with SW and HW bugs that led
to policy violation

 Details in the paper

[- IFT Tag Checker/Propagation
B - IFT Tag Creation/Revoke
—>» - Data/Instruction Bus

—>» -1 bit Signal

@ Alenkruth Krishnan Murali - Task #3105.001 16

Oracle - RV64I| Core Interrupt

Core Fuzzing - Methodology. -__
VIRGINIA

* Built with Open-Source tools

* Reconfigurable core - Berkeley Out-of-Order Machine

» Chipyard framework - SoC generation and Verilator simulations
* Firesim framework - deployment on AMD-Xilinx U250 FPGAs

IRISCV ¢ 3CHIP Q FireSim

https://boom-core.org
https://github.com/ucb-bar/chipyard
https://fires.im

https://riscv.org

@ Alenkruth Krishnan Murali - Task #3105.001 18

BN

https://github.com/ucb-bar/chipyard
https://fires.im/

™

| AIE
Outline ____

7VIRGINIA

* Preliminary Results
» Spectre-v1 PoC with BPU reconfiguration

Alenkruth Krishnan Murali - Task #3105.001 19

Spectre-v1 and Branch Predictor Reconflgurathj%!'-'-'ﬂ!

IVERSITY
IRGINIA

» Spectre-v1 PoC code tuned to mistrain the Gshare predictor.

« BOOM v3 uses a TAGE branch predictor.

 During the fuzzing run, the core reconfigures to use a Gshare

predictor in place of the TAGE predictor.

Secret Value

@ SRC

This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag_rbb_enable=1.

Listening on port

0x0x80002790] =Jwant(")
m[0x 2791] =Jwant(S)
m[0x0x80002 slwant(e)

=?= guess(hits,dec,char)
=?= guess(hits,dec,char)
=?= guess(hits,dec,char)

Triggering a recoffiguration

m[0x0x80002793] =Jwant(c)
m[0x0x80002794] =Jjwant(r)
m[0x0x80002795] =Jjwant(e)
m[0x0x80002796] =Jjwant(t)
xxx PASSED sxxx Co

=?= guess(hits,dec, char)
=?= guess(hits,dec, char)
=?= guess(hits,dec,char)

=?= guess(hits,dec,char)
ter 14463565 cycles

[UART] UART® is here (stdin/stdout).

(R

(IR)

Guessed value
) (extracted through
a side channel)

Alenkruth Krishnan Murali - Task #3105.001 20

IVERSITY
IRGINIA

Spectre-v1 and Branch Predictor Reconflgurathj%!'-'-'ﬂ!

» Spectre-v1 PoC code tuned to mistrain the Gshare predictor.
« BOOM v3 uses a TAGE branch predictor.

 During the fuzzing run, the core reconfigures to use a Gshare
predictor in place of the TAGE predictor.

This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag_rbb_enable=1.
Listening on port 45151

m[0x0x80002790] = want(") =?= guess(hits,dec,char) |1.(9, 34, ") 2.(1, 1,)
TAGE BPU m[@x0x80002791] = want(S) =?= guess(hits,dec,char) |1.(1, 1,) 2.(p, 2,)
m[0x0x80002792] = want(e) =?= guess(hits,dec,char) |1.(1, 1,) 2.(fL, 2,)
Triggering a reconfiguration
= =?= guess(hits,dec,char) |1.(6, 99, c) 2.(1, 1,)
m[0x0x80002794] = want(r) =?= guess(hits,dec,char) |1.(7, 114, r) R.(1, 1,)
m[0x0x80002795] = want(e) =?= guess(hits,dec,char) |1.(8, 101, e) R.(1, 1,)
Gshare BPU m[0x0x80002796] = want(t) =?= guess(hits,dec,char) |1.(7, 116, t) (1, 1,)

¥k PASSED *k*x Completed after 14463565 cycles
[UART] UART@ is here (stdin/stdout).

@ Alenkruth Krishnan Murali - Task #3105.001 21

Outline

* Motivation

* Overview of Core Fuzzing
* Preliminary Results

» Conclusions

Conclusions -__
JVIRGINIA
» Core Fuzzing is a quick, flexible, and automatic security verification
solution
» Hardware-based - faster than static techniques
« User defined configurable security policy

« Automatic guided fuzzing

» Reconfiguration during runtime
« Expose software and hardware bugs not visible during normal execution
« Security-aware design space exploration

@ Alenkruth Krishnan Murali - Task #3105.001 23

™

Alig
Technology Transfer AE

JVIRGINIA
* New ldea - Few months old - First Public presentation.

* No industry interactions as of date.
* Interested? Reach out to us.

Alenkruth Krishnan Murali - Task #3105.001 24

S
allllg
UNIVERSITY
JVIRGINIA

Thank you. Questions?

alenkruth@virginia.edu

Alenkruth Krishnan Murali - Task #3105.001 25

Backup slides

Information Flow Tracking UAGTC
YVIRGINIA

 Partial DIFT support in the reconfigurable core.
* Tagging happens in DCache during write.
» Tags are propagated to the Load Queue

[dcache] Tag of current Dcache request is 1

[lsu][ldg] Tag of the current 1d s - 1

[dcache] Tag of current Dcache request is 0

[Lsu][ldq] Tag of the current 1d is - 0
3 Ox00000000800012cc (Ox18e7f7d3) f15 OxFfffffff43000000

* Working on full IFT mechanism with ability to populate custom CSRs.

@ SRC
ol

