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Applications of ML and Al

e

Healthcare  Security & Education Banking & Autonomous Manufacturing Entertainment Workplace

* NLP - Speech and Text (Voice * Placement and Routing (floorplanning)

assistants)
* Image recognition - Computer Vision
e Recommendation Systems
* Medical Diagnosis

* Code completion
* Attack detection and generation

* Accelerator design?
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Basic CNN example
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Figure 1: The four layer types found in CNNs and DNNs.

DaDianNao: A Machine-Learning Supercomputer[2015], Chen Y et al.
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Figure 1: The four layer types found in CNNs and DNNs.
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DaDianNao: A Machine-Learning Supercomputer[2015], Chen Y et al.
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Figure 1: The four layer types found in CNNs and DNNs.

‘Lf K,

out(z,y)/° = y y S‘ wy, 1o (ke ky)%in(z+ ke, y+ ky )T

£i=0kz=0ky,=0
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(@ + ke, y + ky)

DaDianNao: A Machine-Learning Supercomputer[2015], Chen Y et al.
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Typical computations for Al/ML



Typical computations for Al/ML

* Requires MAC operation for

* feature extraction and
classification

* both of which are highly
parallelizable



Typical computations for Al/ML

* Requires MAC operation for
* feature extraction and

Table 1: Al functions supported by the NNPA Instruction.

Function name

classification Operation Class

. . Query op

* both of which are highly Elementwise ops

. Activation ops

pa I'a | |€| I1Za b I e RNN activation ogs
Normalization ops

* Table along side shows types of Pooling ops
Systolic ops

instructions and operations

QAF
ADD, SUB, MUL, DIV, MIN, MAX

LOG, EXP, RELU, TANH, SIGMOID
LSTMACT, GRUACT

SOFTMAX, BATCH NORMALIZATION
AVERAGEPOOL2D, MAXPOOL2D
FUSED CONVOLUTION,MATMUL-OP,
MATMUL-BROADCAST-OP

required for Al accelerators [1].

1. Al Accelerator on IBM Telum Processor [2022], Lichtenau et el.
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Typical computations for Al/ML

* Requires MAC operation for
* feature extraction and

Table 1: Al functions supported by the NNPA Instruction.

C I ass |f| Cat | on Operation Class Function name
. . Queryop QAF
® bOt h Of Wh I1C h are h |g h Iy Elementwise ops ADD, SUB, MUL, DIV, MIN, MAX
. Activation ops LOG, EXP, RELU, TANH, SIGMOID
pPara llelizable RNN activation ops LSTMACT, GRUACT
Normalization ops SOFTMAX, BATCH NORMALIZATION
e Table alon g Si de shows type s of Pooling ops  AVERAGEPOOL2D, MAXPOOL2D
. . . Systolic ops FUSED CONVOLUTION,MATMUL-OP,
instructions and o perations MATMUL-BROADCAST-OP

required for Al accelerators [1].

[ These operations are not computationally complex but data intensive }

1. Al Accelerator on IBM Telum Processor [2022], Lichtenau et el.
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Need for HW specialization

* History of processors
* Leveraging the advancements in technology nodes (Moore’s law)

» Single core
* Thermal issues, stopped gaining from single cores
e Super-scalar and Multi-core processor
e Dark Silicon issue
* Heterogenous processing to exploit performance based on workloads
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Need for HW specialization

* History of processors

Leveraging the advancements in technology nodes (Moore’s law)

» Single core

* Thermal issues, stopped gaining from single cores
Super-scalar and Multi-core processor
e Dark Silicon issue
Heterogenous processing to exploit performance based on workloads

* For optimum resource utilization and best performance

* Need to design architectures based on workloads

* Complex general purpose computation is not always the solution —

Image and Video processing — GPUs

For scientific calculation with complex mathematical function, that are not supported by basic
ALUs — we need co-processors like FPU (floating point unit), TMU — Trigonometric
mathematical unit, etc.

Sorting, genomics — need for circuits that are proficient in sequencing: Ex. automata
processors

ML/AI — MAC operations, highly parallel computation, reduce data movement



Memory wall



Memory wall

Accelerator

Processing Engine

PE PE
l PE | =| ALU

PE

RF

Fig. 7. Memory hierarchy and data movement energy [34].

Data movement from DRAM is the most
energy expensive operation[1]

1. Hardware for Machine Learning: Challenges and Opportunities[2017], Sze et el.
2. Computing's energy problem (and what we can do about it)[2014], Mark H.
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Memory wall

* Processor performance scales as

o technology scales, but the latency of
PE l PE| [  PrcessingEngine DRAM access scales very slowly[2]
PE | =| ALU

Accelerator

PE

RF

Fig. 7. Memory hierarchy and data movement energy [34].

Data movement from DRAM is the most
energy expensive operation[1]

1. Hardware for Machine Learning: Challenges and Opportunities[2017], Sze et el.
2. Computing's energy problem (and what we can do about it)[2014], Mark H.
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Memory wall

* Processor performance scales as
technology scales, but the latency of

Accelerator

PER{PEf| Frocessinotname DRAM access scales very slowly[2]
PE | =| ALU
il g ===  Why? DRAMs are traditionally designed
Data Movement Energy Cost for h|gh tranSiStOF denSity, WhereaS
| DRAM | I 200x compute units are designed for high
6 performance

PE

~

RF

/Paves way to research on
- when, where and how to compute
Fig. 7. Memory hierarchy and data movement energy [34]. _ improving memory bandW|dth

- thinking of new memory technologies
\ - Neuromorphic circuits, SNN, PiM/

ALy =P 1x (Reference)

Data movement from DRAM is the most
energy expensive operation[1]

1. Hardware for Machine Learning: Challenges and Opportunities[2017], Sze et el.
2. Computing's energy problem (and what we can do about it)[2014], Mark H.
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What is memristor

Activation is input voltage (V,)
Weight is resistor conductance (G))

V, = '
6511\4

|1=V1XG1

V, =
G}1l\\

l,=V,XG,

Partial sum = 4]
is output ‘V1XGZ -

current =~ Y17 M1 T Y2792
Image Source: [Shafiee, ISCA 2016)
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What is memristor
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Activation is input voltage (V)
Weight is resistor conductance (G;)

V, = I
6}11\4

|1 = \’1 X (;1

V, =
c;:\"'z\\6

Iz = \l;:" <;2

Partial sum | = Iy + 1,

is output
current = V1XGy+V;XG,

Image Source: [Shafiee, ISCA 2016)



What is memristor

* Memristor is a hardware that can perform matrix multiplication with high speed Activation is input voltage (V,)

Weight is resistor conductance (G)
* By setting the voltage to the value of Ni and having the matrix W, the product of

the matrix can be obtained by having the resistance Ri and reading the current G\h\l
* Matrix multiplication is calculated in parallel => efficiency increase Iy = v,xc;1

V, ==
| G:\"‘l\.
VL

i N
N s
Viof | ¢
'77 L EotaL Bt
current = V1X Gy + VX G,

o

777

gRs @Rs @Rs léZRs A

: oo ‘ Voltage (V)
Vo Ver Vo. K

Image Source: [Shafiee, ISCA 2016)

Current (A)
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What is memristor

* Memristor is a hardware that can perform matrix multiplication with high speed Activation is input voltage (V,)
Weight is resistor conductance (G)
* By setting the voltage to the value of Ni and having the matrix W, the product of
the matrix can be obtained by having the resistance Ri and reading the current 6\71\1
* Matrix multiplication is calculated in parallel => efficiency increase Iy = v,xc;1
V, =
| G:”"z\,
L=V xG\
W A A , SR
Partial sum | = I +1
High Power Consumption, ; / & & soutput  _y s G, +V, X G,

o

Ty

gRs @Rs @Rs @Rs N

: . ‘ Voltage (V)
Vo Ver Vo. K

Image Source: [Shafiee, ISCA 2016)

Current (A)
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 Quantization
=> To reduce data bits and fractions
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* Quantization * Pruning
=> To reduce data bits and fractions => To reduce number of weights in
learning
Data loss Accuracy

Solve This Problem Using ADMM
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=> Find the Optimum Conductance State Levels
=> Remove Unnecessary Coefficients



How to Improve memristor Power

* Quantization * Pruning
=> To reduce data bits and fractions => To reduce number of weights in
learning
Data loss Accuracy

Solve This Problem Using ADMM

min F({w;}N._;, {b}N.1) , W€ Py, bie G
{w;},{w;}

=> Find the Optimum Conductance State Levels
=> Remove Unnecessary Coefficients



Current Accelerator Space

- Y -
o o o
(3} 2] ~

Peak Performance (GOps/sec)
)
»

Legend

Computation Precision
analog
int1

int2
int4.8
int8
Int8.32
int16
int12.16
int32
fp16
fp16.32
fp32
fp64

*OXRXHPO A VAL

fﬁé!m

Form Factor

10 _
B Chip
i ,\Q Kendrytev B Card
102 ?yntlant B System
i/laximv,‘e\@
2" Computation Type
10! e . : e [ Inference
1072 107! 10° 10’ 102 103 104

25/08/23

Traini
Peak Power (W) n lrening

Fig. 2: Peak performance vs. power scatter plot of publicly announced Al accelerators and processors.

Figure from Al and ML Accelerator Survey and Trends [2022], Reuther et el.
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Data Center Al Accelerators
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Fig. 3: Zoomed region of peak performance vs. power scatter
plot.

* Requirements
 Train? Infer?
 The accelerators
e ASIC
* FPGA
e CGRA?
e PIM
e GPU
 Qur observations

Figure from Al and ML Accelerator Survey and Trends [2022], Reuther et el.
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Acceleration
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Requirements for Data Center Al
Acceleration

Latency (Service Level Objectives/Agreements[SLO/SLA])
Total Cost of Ownership (TCO)

ﬁTAI‘”AL Ill:AlA AI"AI‘:LIAM IAA’A

High Performance Concurrent Secure
Mixed Workloads Application Isolatfion Multi-Tenancy

1

2

3. Target select algorithr~- -
4. Multi-tenancy and Isc

Training

Figure 7 - Supporting multiple users or workloads simultaneously

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova System:s.
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Requirements for Data Center Al
Acceleration

Latency (Service Level Objectives/Agreements[SLO/SLA])
Total Cost of Ownership (TCO)

Target select algorithms vs Target wide algorithm base
Multi-tenancy and Isolation (sometimes, mixed workloads)
Scalability and Future Proofing

Power consumption and Cooling

N O Uk e

Programmability

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.



Train? Infer?

TRAINING

1. Frequent memory updates
(forward and back propagation)

2. Large models and parallelization
constraints — distributed training
is limited by off-chip bandwidth

3. Wider operands
Training is experimentation

5. Compute intensive

A A

INFERENCE

Weights are only read once
Parallelization is easier

High precision is not a "need"
Inference is a one-time activity

Not as intensive as training



Some Common Strategies
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Some Common Strategies

* High Bandwidth and High Capacity Memories to store weights

* Matrix multiply and Vector operation units
* Systolic arrays and (explicit' ~~*~*l~wer ~mnbitmoteren s
\

il [. . . i
PCU PMU PCU
PMU

DDR Memory

Figure 4 - RDU dataflow execution

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.
CS-6354 14
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Some Common Strategies

* High Bandwidth and High Capacity Memories to store weights

* Matrix multiply and Vector operation units
 Systolic arrays and (explicit) dataflow architectures

 Large on-chip memories (weight pinning)

e Data types of varied precision (tailored for Al)
 FP32, TF32, BF16, FP16, DLFLT16, UINTS, INT8 and maybe INT4
 Size of datatype influences power

e SIMD execution, MIMD execution, SIMT execution!

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.



Hardware and Software for Al/ML?
User Entry Points I I I I

- Write to popular ML frameworks .
- Push-button automation path O PyTorch 1F TensorFlow User Graph User Kernel

Dataflow Graph Analyzer Template Compiler

Dataflow Graphs Spatial Templates
Dataflow Optimizer, Compiler, & Assembler

Runtime

S)|SambaNovar

Figure 6 - SambaFlow components

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova System:s.
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Hardware and Software for Al/ML?

Safe to assume all the following works have a similar software stack.

User Entry Points I I I I

- Write to popular ML frameworks . ‘
Eshibuleniautenation pafh () PyTorch 1F TensorFlow User Graph User Kernel

Dataflow Graph Analyzer Template Compiler

Dataflow Graphs Spatial Templates
Dataflow Optimizer, Compiler, & Assembler

Runtime

SlisambaNovar |~

Figure 6 - SambaFlow components

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova System:s.
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DaDianNao - ASIC Accelerator

Data
to SB

input output
‘ ‘ N neurons neurons

Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

Memory is split between tiles for high
bandwidth.

More MACs than contemporary GPUs

36MB of eDRAM is insufficient for current ML
model training.

Training and Inference

Tile based accelerator (recurring design choice)
Uses Embedded DRAM (eDRAM) instead of
SRAMs for density

Weights are pinned to the eDRAM - limits off-
chip memory access.

More space to memory rather than compute

—[D Stagel Stage2 | Stage3

e

[#H
|
@---0 []l

Y
-

| B
|

TraWer 3=
function

. NBin NBout
]

>
Q.
Q

3 Multiply

Figure 6: The different (parallel) operators of an NFU: multipliers,
adders, max, transfer function.

DaDianNao: A Machine-Learning Supercomputer [ISCA 2014], Chen et al.

25/08/23
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Google TPU v1 and v4i - ASIC Inference

accelerators

TCS & SMEM, IMEM | Tensor | | Legend
ofe I:] Compute (TensorCore)
Memory and On-Chip
AN AN Interconnect (OCI)
& g Y Inter-Chip Interconnect
(ICl)
Host communication
» VPU P
XLU K, > & (/] XLU D Management/firmware
VMEM
|:| Off-chip
G MXU K > Mxu
¢ tost 3 oy
S < Other TPUv4i
7 y X E— Chips (3) >/
] [ A A
NV :‘? 3 :j )
i ‘ CMEM ‘ LST ’ LST }
y N 2\ 7\ 7\ S
il i R
AN AN
UHI < ‘/< (o]0]] ]\‘7’) ICR
L U I =
/ N/
|| HBM % ‘ HBM
MGR HBMC [\—y]| Stack | | HBMC \VW Stack

Figure 5. TPUv4i chip block diagram. Architectural memories
are HBM, Common Memory (CMEM), Vector Memory
(VMEM), Scalar Memory (SMEM), and Instruction Memory
(IMEM). The data path is the Matrix Multiply Unit (MXU),
Vector Processing Unit (VPU), Cross-Lane Unit (XLU), and
TensorCore Sequencer (TCS). The uncore (everything not in
blue) includes the On-Chip Interconnect (OCI), ICI Router
(ICR), ICI Link Stack (LST), HBM Controller (HBMC),
Unified Host Interface (UHI), and Chip Manager (MGR).

25/08/23

Inference only accelerators targeted for MLP, RNN-LSTM and CNN (in
vl - 2015)

Support for BERT, transformer encoder and LSTM decoder, Wave RNN
(2020).

TPU v4i details:

128MB common memory allows reuse of weights during inference
Inference in batches

Systolic array Matrix Multiplication - 4x 128x128

XLA compiler compiles the NN models.

322b VLIW ISA

175W TDP - Air cooled

on-chip interconnect

bf16/int8

In-Datacenter Performance Analysis of a Tensor Processing Unit
(ISCA 2017), Jouppi et al.

Ten lessons from Three Generations Shaped Google's TPUv4i (ISCA
2021), Jouppi et al.

CS-6354 17



Google TPU v2 and v3: ASIC Training

Accelerators

-

PCle

ueues
< Activation

Storage

A

Activation
Pipeline

- -

TPUV1

= DDR3 DRAM

v

Matrix
Multiply
Unit

\

—

4— Accumulators

- HBM DRAM <—+ |Interconnect ’

[ A
PCle TPUv2
5
Queues S S— Matrix
Multiply
Unit
EEEE— Vector i
Memory t
<—=  Vector Unit

Figure 1. TPUv1 block diagram (left) vs TPUv2/v3.

v2 and v3 were built around the v1 inference chip.

Larger matrix multiply unit

SO swWNE

High Bandwidth Memory with a vector scratch pad memory (SRAM)
Support for bf16 (Matrix Multiplication), fp32 (accumulation)
Activation pipeline is replaced with a more general purpose vector compute unit for training
On and off-chip networking for parallelization at scale. (2 cores per chip)

XLA compiler support. Same VLIW ISA

The Design Process of Google's Training Chips: TPUv2 and TPUv3 [2021], Norrie et al.



Al Accelerator on IBM Telum - ASIC

Cache
Hierarchy

4 * On-chip accelerator for inference. _
9? 9? N 9?? * Primarily for privacy and latency concerns i T =
« All threads on the multicore can offload S memichgee Y Ut

9?9Fid;j?*ﬂ * Interfaced shared L2 cache Figure 1: Telum chip die photo highlighting the optimized
g core, the new cache hierarchy and the Al accelerator.
5 systolic array : e Coherency is maintained with firmware
eﬁ%ﬁe %ﬁ%ﬁ e Like atomic instructions
S— e Suitable when models are large than L1
* Generic accelerator - for multiple models

functions e DLFLT16 support. Big Endian
* Firmware updates and Firmware controls offloading
* NNPA - Neural Network Processing Assist instructions

cip ing <] [IRAALOE _ * No influence on power and clock frequency
interface —>| Back Scratchpad
* Accessed in a per request basis, no chaining.

Data Mover and Formatter

Data Mover
and Formatter

Al Accelerator on IBM Telum Processor [2022], Lichtenau et el.
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Tesla Dojo: CPU with Al capabilities - ASIC

 Middle ground Between General Purpose CPU
and Application Specific ASIC
* Uses a custom ISA tuned for ML
4810 local s * Wide SMT Vector and Scalar functional Units
B et = * Large SRAM

N 64B from local
List SRAM

g Decode x2 e Built to Scale

* NOC Router designed for throughput - relies

SRAM T more on data movement than local storage.

(1.25MB)
* VM, coherency and other poorly

; - scaling features were omitted.
AGU
SMT Vector Scheduler

e . R"""F"e Related:
StMD Tesla had its FSD chip - inference in Autonomous
Datapath atviu . . . . .
x4 vehicles which is very similar to TPUv1.

I-Cache

8B St
—

DOJO: The microarchitecture of Tesla's Exa-Scale Computer [2022], Talpes et al.



Project Brainwaves - FPGA Inference

Accelerator

i Tile E"
I Engine [gg*

Matrix-Vector Multiplier |4

Top Level
Scheduler

Multifunction
Unit

Vector
Arbitration
Network

PRAM Network

Multifunction b
o Unit
Legend Hadamard
Memory
<+—\/ector data Product
. PWV Activation PWV Add/
4~ Operations Functions Sub/Max

Fig. 3. Microarchitecture overview.

Vector Input Vector

Tile Engine Register File

Fan-Out Tree

Matrix
Exponent

A 4

Y

[T
Fan-In Tree |
xL

FPGA based Neural Processing Unit (NPU)
e Configurable during compilation
* High Flexibility
Batch Size =1 - Low Latency
DNN accelerator
Single threaded SIMD ISA
e Spawns millions of primitive ops
* Minimal compiler support needed
Matrix-Vector Multiplication and not Matrix-Matrix
Dataflow architecture (instruction chaining)
Model Pinning
Sub-banked memory (Similar to DaDianNao)
125W on Stratix 10 FPGAs

Vector Output

XL = Number of Data Lanes A
XN = Number of Dot Product Engines (DPEs)

Fig. 5. Matrix-vector tile engine microarchitecture.

A Configurable Cloud-ScaleDNN Processor for Real-Time Al [ISCA 2018], Fowers et al.
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Mipsology with Xilinx FPGAs - FPGA
Inference Accelerator

Training using GPU

e
GPU Zebra =
ensdfFiow | o * CNN Inference
~ Training : TPyTochIh : - Training nVvidia ) - -
5 e e e '\‘ 5 o * Software Stack which is aware of underlying FPGA
Framework * : MXNet : Framework
- T ndow | — * Accelerates the common layers
3 SRR Same thining 3 ot * Pre-compiled FPGA binaries - optimzed for
a New a Workload
2 ' data = s ' .
AN = i B b g Vicigns ? NN b i & < g ones  Zero FPGA knOWIGdge reqUIred
v 1 . * Scalable for N FPGA boards

IR - " > e

Inference on CPU/GPU

Framework Same framework Framework gm
GPU library Single Linux command libZebra §
GPU Driver Zebra Driver 8
T Instantaneous i .
— straightforward — g
cie bus oy cie bus

transition Q
o = N
3 « . Q "{‘00» L]
@ rolel) Same neural network o 0 g‘
= - No FPGA compilation  § g o

% <_? Zebra

Deep Learning Inferencing with Mipsology using Xililnx ALVEO™ on Dell EMC Infrastructure [2019]
25/08/23 CS-6354



Mozart: Reuse Exposed DataFlow - CGRA

Partitioned Global Address Space

~=>=======—=== PR —————————— P ——————————= >
| | I— | | Scratchpad Memory

Memory (64KB) »| Stream Engine

A

I
I
: H T
21 o \l, \1, ol Inter-tile «—> (MSE)
ol i 8] Streams o Uncore
£ : On-Chip | 3 On-Chip On-Chip | 3, On-Chip < Controller |¢ > <>
° o| <) prpemeye >
SilReeeday  LResed e R » K X yy X Stream Engine Balance Unit |«
: \;, H T I I Intra-tile (SSE) «>
1 Streams \4 v ¢ ¢
- “==| Compute Compute o Compute i Compute <=.> , ¥ Input
o Dataflow Dataflow s Dataflow . Dataflow VN: s | D$ s | p$ Disst;?:c?er l€-----» Vector Port
Tile1 Tile 2 Tile 3 Tile 4 Von-Neumann To ~
. . . ) MSE, RSE & DRE
RED: Reuse-Exposed Dataflow Architecture COth':,uer Core Cored Sofbrain m Data Recur
e ——— il o ¢ CSCA g ... NE - Engine (DRE)
‘ [ e Config IXE ﬁ N
ROCC [ | | Engine
Output
[ Vector Port
e ) — : (a) Tile Top (b) Softbrain
Mozart Package Mozart Die Mozart Accelerator Card Legend: _
<--» Control & command interface MSE m
Figure 1: Mozart Hardware and its Reuse-Exposed Dataflow <> 5125 datainkerione

Architecture (RED)

* Parallelism in Smaller Batches (N=4) - Accelerate features General to ML and not just DNN/CNN
* Reuse Data to maximum extent

» Streaming processor - gather and scatter-esque instructions

* Configurable Circuit Switch Compute Array (CSCA) - 8 FUs - Dataflow Architecture
* Software for configuration of CSCA based on the model.

The Mozart Reuse Exposed Dataflow Processor for Al and Beyond [2022], Sankaralingam et al.
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SambaNova: Reconfigurable Dataflow -

CGRA

DDR Memory

Figure 4 - RDU dataflow execution

Sample 6
PCU PMU Zell]

Sqmle 4

Train and Infer

Accelerate multiple workloads (not just
A/ML)

Support pre/post processing of data
ISA tuned for Dataflow architecture

Reconfigurable DataFlow Unit(RDU) with
interconnects

PCU - Pattern Compute Unit - SIMD
PMU - Pattern Memory Unit - SRAM

Symbaflow software stack - TensorFlow to
RDU

Scalable

Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.
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BANK BANK  BANK BANK

Samsung Aquabolt-XL - HBM2 with PIM

HBM Core Die
Decoded ! UNL | UNI  UNI UNI

- - - - - . _ e : :
bl BANK  BANK BANK  BANK
Row/Col

PIM PIM PIM PIM PIM Address
UNI UNI UNI UNI UNI

External data (CAS) commands increase CRF PC and read

T - T T T
(write) data from to column address at the same time.

As a result, PIM units do not impact standard DRAM timing

BANK BANK BANK BANK BANK t
Memory command R o parameters.

TSVs & Periphery (from MC)

CRF PC
BANK  BANK BANK  BANK BANK

Bank

256b
Cell Array
Column Decoder é
* Programmable PIM execution unit at the 1/0 boundary of a HBM2 bank et Crir ;
* Bank-level parallelism: access multi banks/FPUs in a lockstep manner I
* Same formfactor as non-PIM counterpart - no redesign of DRAM core | .

e SIMD FPUs in the PIM block - Custom RISC 32b ISA
» Software stack to exploit new capabilities.

Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML accelerators and beyond [2021], Kim et al.
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NVIDIA Grace Hopper Superchip

CPU LPDDR5X
s 512GB

000 o'

oy GRACE HOPPER

Py cPu GPU

CPU LPDDRSX
<512GB

GPU - Graphics Processing Uni

NVLINK C2C
900 GB/s

o
w
w
%o
(B
i
1~
e

< 256 GPUs

yyvy

NVLINK NETWORK

e Streaming Multiprocessor (SM)
* Dynamic programming Instructions (DPX) Figure 2. NVIDIA Grace Hopper Superchip logical overview

INT32 FP32 FP32 FP64 INT32 FP32 FP32

* Tensor Memory Accelerator (Data transfer between local and global memor
INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 TENSOR CORE INT32 FP32 FP32 TENSOR CORE .

INT32 FP32 FP32 4™ GENERATION INT32 FP32 FP32 4™ GENERATION )

ransformer Engine

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

* HBM3and PCle 5

INT32 FP32 FP32 INT32 FP32 FP32 FP64.

W W W W W W W W gy W W W W W W W W Cery
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

— , * NVLink 4 - 900GBps (Multi GPU 10)

Warp Scheduler (32 thread/clk) felk)

* NVSwitch - 13.6 Thits/sec (Between GPUs in clusters, datacenters)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FPe4 . . .

* SXM for high power and High Bandwidth (alternate to PCle)
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84

INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84

INT32 FP32 FP32 FP64. INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP84 TENSOR CORE

INT32 FP32 FP32 FP64. 4"' GENERATION INT32 FP32 FP32 FP64. 4™ GENERATION

INT32 FP32 FP32 FP64. INT32 FP32 FP32 FP84.

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84

EEEEEEEE I EEEEENEEE Clustering of Accelerators a key idea with models scaling.

Tensor Memory Accelerator

Figure 7. GH100 Streaming Multiprocessor (SM)

NVIDIA H100 Tensor Core GPU Architecture [2022], Nvidia.
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Cerebras Systems: Wafer Scale Engine 2

Cerebras WSE-2
2.6 Trillion Transistors
46,225 mm?2 Silicon

Figure 2. The Cerebras WSE-2 and the largest Graphics Processing Unit in comparison

Cerebras Systems: Achieving Industry Best Al Performance Through A Systems Approach [2021]

25/08/23

CS-6354

Largest GPU

54.2 Billion Transistors
826 mm?2 Silicon

Chip size

Cores

On chip
memory

Memory
bandwidth

Fabric
bandwidth

Table 1. Overview of the magnitude of advancement made by the Cerebras WSE-2.

Use the ENTIRE WAFER!
Interconnects - Swarm
No Multiplying by zero -
sparsity aware

Sparse Linear Algebra
Compute (SLAC) cores

Cerebras WSE-2
46,225 mm?
850,000

40 Gigabytes

20 Petabytes/sec
220 Petabits/sec

826 mm?

6,912 + 432

40 Megabytes

1,555 Gigabytes/sec
600 Gigabytes/sec

Cerebras Advantage
56 X

123 X

1,000 X

12,862 X

45,833 X

27



Observations

e Custom software stack and not just hardware

* Exploit parallelism everywhere - Batched inference and distributed training
* Generic acceleration (Accelerator Startups)

e Abstraction of programming (Accelerator startups)

* Resurgence of explicit dataflow architectures.

* Large on-chip memories (memory wall is real: PIM solutions)

* Value pinning and reconfigurable processing cores/programmable cores

. On-lg:hip interconnects and off-chip networks - Scalability with model
scaling

e Custom data types
 Some on-chip accelerators due to customer needs.



Al/ML

accelerators for edge computing

Edge device
222,
i
Small DNN <
200 Protocol
(b)
(a)
Edge server
Edge device
Offloading] Preprocessed
decision | data |
Run
locally
200 Final result
e N
Cat0.9 Dog 0.1 P N
Cat0.95 Dog 0.05
(d)
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Key Metrics for edge/embedded Al/ML
accelerators

* TOPS/W (Tera Operations per * Hardware cost

Watt) e Designing and Manufacturing

* Accuracy * Flexibility
* Quality of results * Due to evolving DNN models

* Throughput —analytics on high « Scalability

volume data

* Latency —autonomous navigation * Privacy

Hardware for Machine Learning: Challenges and Opportunities[2017], Sze et el.



Process | 65nm CMOS

Eyeriss

# of PEs 168

RF Size/PE 0.5kB

Buffer Size 108 kB

Clock Rate 200 MHz

* A very tiny low power Al

Precision | 16-bit Fixed-Point

Area ~278nW

accelerator chip ~278nW

[ IS a Spatial arChitectu re Figure 4. Die photo and spec of the Eyeriss chip [41].
* Use dataflow processing
* To facilitate efficient data reuse

* Focused on accelerating DNN

e |dentified convolution is the
most important

* Takes 90% - 99% of computation
and runtime

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks[2016], Sze et al.
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Process | 65nm CMOS

# of PEs 168

Eyeriss

RF Size/PE 0.5kB

Buffer Size 108 kB

Clock Rate 200 MHz

* A very tiny low power Al

Precision | 16-bit Fixed-Point

accelerator chip ~278nW T
[ IS a Spatial arChitectu re Figure 4. Die photo and spec of the Eyeriss chip [41].

* Use dataflow processing
e To facilitate efficient data reuse

21 49 17 25 128
i -74

71 76 73 68.| 59

* Focused on accelerating DNN 152 | 164 | 100 [ 157 | 155 |
o [ . . [~201 | 190 | 185 |-180 o T e 61 R ‘
e |dentified convolution is the s e ] il
most important L e
* Takes 90% - 99% of computation e
and ru ntime AlGeekProgrammer.com © 2019

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks[2016], Sze et al.
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Eyeriss

e Dataflow implementation
* QOutput Stationary
* Weight Stationary

* No Local data reuse

e All the input and filter data come from
global buffer

e All the partial sums and output written
to global buffer
 Eyeriss proposed novel dataflow
implementation
* Row-stationary approach
* High input reuse (filter, feature maps)

* Minimize partial sum accumulation
cost

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al



Eyeriss

e Dataflow implementation
* QOutput Stationary
* Weight Stationary
* No Local data reuse

e All the input and filter data come from
global buffer

* All the partial sums and output written
to global buffer

 Eyeriss proposed novel dataflow
implementation
* Row-stationary approach
* High input reuse (filter, feature maps)

* Minimize partial sum accumulation
cost

Eyeriss V2

* Designed for sparse and compact DNN
models

AEETT

L] o . 2D Mesh
I =y
E PE PE PE PE Il — . l GLBv PEv
BTttty — )

=| |[PE] [PE] [PE] |PE] Fjﬁ Fjﬁj

8l 3 +—1—— [ceF[re}’ [ceH[rE]}

@] [pe] [Pe] [PE] [PE]

(3) Original Everizs (b) Eyerizs w2

Fig. 5. Comparison of the architecture of original Eyeriss and Eyeriss v2.

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al
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Eyeriss

e Dataflow implementation
* QOutput Stationary
* Weight Stationary
* No Local data reuse

e All the input and filter data come from
global buffer

* All the partial sums and output written
to global buffer

 Eyeriss proposed novel dataflow
implementation
* Row-stationary approach
* High input reuse (filter, feature maps)

* Minimize partial sum accumulation
cost

Eyeriss V2

* Designed for sparse and compact DNN
models

* Proposed highly on-chip network,
called hierarchy mesh

* To adapt to different amount of data-
reuse, bandwidth, and utilization

__ ¥

—| ‘||re] [PE] [PE| |PE

5 [pe| [PE] [PE] [PE] 20 Mesh A

EaEs O

E PE PE PE PE II —r r l GLB - PE -
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(3) Original Everizs (b) Eyerizs w2

Fig. 5. Comparison of the architecture of original Eyeriss and Eyeriss v2.

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al
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Eyeriss

e Dataflow implementation
* QOutput Stationary
* Weight Stationary
* No Local data reuse

e All the input and filter data come from
global buffer

* All the partial sums and output written
to global buffer

 Eyeriss proposed novel dataflow
implementation
* Row-stationary approach
* High input reuse (filter, feature maps)

* Minimize partial sum accumulation
cost

Eyeriss V2

* Designed for sparse and compact DNN
models

* Proposed highly on-chip network,
called hierarchy mesh

* To adapt to different amount of data-
reuse, bandwidth, and utilization

* 12.6X faster and 2.5X energy efficient
than the original Eyeriss

4
PE PE PE PE
] [ee] [ee] [ee] —

P - ’ —
IT,{E_I ,_P‘E_I IT’{E_I IT,;E_I IIA lN(thO:k (o5 rﬁ]
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Fig. 5. Comparison of the architecture of original Eyeriss and Eyeriss v2.

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al
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Eyeriss Eyeriss V2

e Dataflow implementation * Designed for sparse and compact DNN
* Output Stationary models
* Weight Stationary * Proposed highly on-chip network,
* No Local data reuse called hierarchy mesh
\

reduce data movement, storage, and computation,

reuse as much as possible

implementation 3 ] [ee] (] [es] / omesh A
« Row-stationary approach f Fel [e] [rel [e) e (o} [y
* High input reuse (filter, feature maps) g I{EI IPIEI I{El l"iﬁl Igﬁlﬁ I;’;—Ijllgfj]
* Minimize partial sum accumulation 2] [ee] [re] [ee] [Pe]
cost (a) Original Eyeriss (b) Eyeriss 2
Fig. 5. Comparison of the architecture of original Eyeriss and Eyeriss v2.

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al



Minerva

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.



Minerva

* Designed to deploy DNNs in power-constrained environment

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.



Minerva

* Designed to deploy DNNs in power-constrained environment

* Automated co-design flow

Machine
Learning
(Keras)

Architecture
(Aladdin)

Circuits
(EDA)

Dataset

1

Training Space
Exploration

—
Section IV
-

Accelerator uArch
Exploration

Baseline Design

Accuracy Accuracy Accuracy
Analysis Analysis Analysis
Data Pruning Fault
Types Statistics Tolerance
3 4 5
Data Type Operation Fault
Quantization Pruning Mitigation
Fixed-Point Fault & Voltage
Datapath & SRAM Models

Optimized
Design

Chip
HW PPA Layout
Models
\Section Vi Section VIl Section w \ Section IX /
Design Optimizations Validation

Figure 2: The five stages of Minerva. Analysis details for each stage and the tool-chain are presented in Section 3.

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.

25/08/23

CS-6354

33



Minerva

* Designed to deploy DNNs in power-constrained environment

Dataset

* Automated co-design flow

Machine
Learning
(Keras)

Optimized

Architecture -
Design

Aladdi .
(Aladdin) Baseline
uArch
Fixed-Point Fault & Voltage
Datapath & SRAM Models
—~
Circuits Chip
(EDA)
N—
Section IV Section V Section VI Section VI Section VIII Section IX
- /) —_ —_ \ J

Baseline Design Design Optimizations Validation

Figure 2: The five stages of Minerva. Analysis details for each stage and the tool-chain are presented in Section 3.

* Power reduction by using
* Fine-grained, heterogenous data type optimization
* Selective pruning
* Lowering SRAM voltage and domain-aware fault mitigation

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.



Minerva

* Designed to deploy DNNs in power-constrained environment

e Automated co-design flow

p
Approximate to reduce power consumption within

the required accuracy limits

Figure 2: The five stages of Minerva. Analysis details for each stage and the tool-chain are presented in Section 3.

\_ J

* Power reduction by using
* Fine-grained, heterogenous data type optimization

* Selective pruning
* Lowering SRAM voltage and domain-aware fault mitigation

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.




Al-RISC processor

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.



Al-RISC processor

CPU «= APU _cu cPU cPU

t ¢+ ¢ & 3

APU
APU I = Memory

AFU

Memory 3 I

Coprocessor Near Memory APU Processing in-Memory CPU Functional Unit

(a) (b) (c) (d)

Figure 1.4: Different Al Processing Unit (APU) types and their integration with the CPU hardware

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.
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Al-RISC processor

* Introduces AFU: Tightly integrated
Al Functional Units

CPU «= APU S cPU cPU cPU
$ & 3 e
J Memory pEmre ‘
Memory : I = I - APU R
Coprocessor Near Memory APU Processing in-Memory CPU Functional Unit
(a) (b) (c) (d)

Figure 1.4: Different Al Processing Unit (APU) types and their integration with the CPU hardware

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.
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Al-RISC processor

* Introduces AFU: Tightly integrated
Al Functional Units

* Inspired from history of adding
instructions and functional units
for commonly used operations

* Ex: floating-point arithmetic became
Plopular and eventually we have

oating point instructions and units
inside the processor

CPU 4= APU

L 2

Memory

CPU

Memory

; I APU I

~ CPU

$

Memory
L g

APU

Memory

Coprocessor

Near Memory APU

Processing in-Memory

CPU Functional Unit

(a)

(b)

(c)

(d)

Figure 1.4: Different Al Processing Unit (APU) types and their integration with the CPU hardware

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.



Al-RISC processor

* Introduces AFU: Tightly integrated
Al Functional Units

* Inspired from history of adding
instructions and functional units
for commonly used operations

* Ex: floating-point arithmetic became
Plopular and eventually we have

oating point instructions and units
inside the processor

* Reduces complexity required to

design

* bus interfaces

» separate ISA for a decoupled Al
accelerator
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Figure 1.4: Different Al Processing Unit (APU) types and their integration with the CPU hardware

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.



Al-RISC processor

* Introduces AFU: Tightly integrated
Al Functional Units

* Inspired from history of adding
instructions and functional units
for commonly used operations

* Ex: floating-point arithmetic became
Plopular and eventually we have

oating point instructions and units
inside the processor

* Reduces complexity required to

design

* bus interfaces

» separate ISA for a decoupled Al
accelerator

CPU «=» APU ~ CPU cPU cPU -

AFU
$ & ¢ 2
M
M . L) Memory L ‘
emory s

I APU I - Memory

Coprocessor Near Memory APU Processing in-Memory CPU Functional Unit
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Figure 1.4: Different Al Processing Unit (APU) types and their integration with the CPU hardware

e Such tight integration is good for edge but not
for cloud
* While data-centers Al accelerators run
models with more than 100 billion
parameters
* tinyML has introduced much smaller
models for edge devices i.e. around 100K

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.



Al-RISC processor

* Introduces AFU: Tightly integrated cPu e AU | [ cru Tou ([eu
Al Functional Units $ $ £ 3 ‘i

* Inspired from history of adding R I I )
InStrUCtlonS and funCtlonaI unlts Coprocessor Nearh:::oryAPU Processing in-Memory CPU Funec::l::ll Unit
for commonlv used aoneratiaons = = - ”

vare

Specialized ISAs are a good option

N R/
design
* bus interfaces

» separate ISA for a decoupled Al
accelerator

models with more than 100 billion
parameters

* tinyML has introduced much smaller
models for edge devices i.e. around 100K

Al-RISC: Scalable RISC-V Processor for loT Edge Al applications[2022], Vaibhav V.



Al-RISC Processor (contd.)
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Figure 1.5: Top level overview of the AI-RISC processor proposed in this dissertation .
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* [ssues with ISA-extension
 Compatibility across the stack
* Need joint efforts by the community
* Agile design infrastructure

* [ssues with scalability

* Future work
* Tape-out Al RISC processor

* Integrate it with LiteX (open source
SoC builder)

 End-to-end framework from DSL to
GDSII layout
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Federated Learning in Edge

* Federated learning - Can be implemented using
coarse grained reconfigurable

Preserve data-privacy :
array (CGRA) that act like a

- Less data movement bunch of mini-accelerators and
- More efficient/less power can be dynamically configured
consumption for a particular use case

- Prof. David Atienza (EPFL)



Observation



Observation

Critical path reduction
* Eyeriss identified the most common operation — convolution

* |dentified the bottleneck -> it’s the data movement, solved it by exploring
strategies of data-reuse

* Eyeriss V2 discussed about a novel NoC approach to keep the PE’s
utilization high

* Minerva tried to optimize the MAC operations by compressing the data,
pruning the data : remove the operations that don’t impact the results
dramatically

* Find a way to integrate it with the existing or new framework

e AI-RISC is tryinﬁ to build an end-to-end framework from quick tape-out of
Al chips from the Domain specific language description



Major dilemmas

Generalization =) Specialization

Bring data to compute =) Bring compute to data
Specialized Components ﬁ Specialized Instructions

Online learning <) Offline learning
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Major dilemmas
Generalization =) Specialization

Bring data to compute =) Bring compute to data
Specialized Components _ Specialized Instructions

Online learning <) Offline learning

[Decisions to be made based on trade-offs and workloads]
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Design Space Exploration
[ One ring that unites and rules them all
e Aladdin

* A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space
Exploration of Customized Architecture

* For all types of accelerator
 Scale-SIM (specially for Al accelerators)
e Accelergy — early stage energy estimator
* Timeloop — Performance simulator and DNN mapping tool
* PIMulator-NN - Simulator designed for PiM based NN accelerators

* Once you have designed, how do you integrate, so we also have
* Open source RISC-V toolchains
* ESP (more flexible than chipyard)
* Chipyard, Firesim



Past and Present

 Cambrian explosion of Accelerators

* Novel techniques
e Solutions across the stack

* Diverse target application and workloads
* Limited works on data privacy

e Carbon footprint of computing! Large datacenters chugging
powetr.

* Reinventing the wheel multiple times

* Missing a community effort (industry-academia gap)
* Proprietary solutions in the industry
* Novel ideas from academia unadopted
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Future

* Larger models require more data (>540B parameters) - PIM is one solution
* Collaboration between within Academia and Industry

* Privacy aware ML models and architectures

* Homomorphic encryption

* Better ML algorithms and newer technologies - Spiking Neural Networks

« HW aware Neural Architecture Search (NetAdapt)

* Improved process nodes and processing paradigms (eFPGA, low power CGRAS).
Environmental impact of Computing needs to be studied - global warming!
Inference and training at scale
The Al Accelerator Wall?

e Are we relying on performance through transistor scaling?

 What is the performance boost that we get from intelligent design?
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Questions?



Thank youl!



