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Applications of ML and AI

• NLP - Speech and Text (Voice 
assistants)
• Image recognition - Computer Vision
• Recommendation Systems
• Medical Diagnosis
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• Placement and Routing (floorplanning)
• Code completion
• Attack detection and generation
• Accelerator design?



Basic CNN example
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Typical computations for AI/ML
• Requires MAC operation for

• feature extraction and 
classification

• both of which are highly 
parallelizable

• Table along side shows types of 
instructions and operations 
required for AI accelerators [1].
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1. AI Accelerator on IBM Telum Processor [2022], Lichtenau et el.

These operations are not computationally complex but data intensive



Need for HW specialization
• History of processors

• Leveraging the advancements in technology nodes (Moore’s law)
• Single core

• Thermal issues, stopped gaining from single cores
• Super-scalar and Multi-core processor

• Dark Silicon issue
• Heterogenous processing to exploit performance based on workloads

• For optimum resource utilization and best performance
• Need to design architectures based on workloads

• Complex general purpose computation is not always the solution – 
• Image and Video processing – GPUs
• For scientific calculation with complex mathematical function, that are not supported by basic 

ALUs – we need co-processors like FPU (floating point unit), TMU – Trigonometric 
mathematical unit, etc.

• Sorting, genomics – need for circuits that are proficient in sequencing: Ex. automata 
processors

• ML/AI – MAC operations, highly parallel computation, reduce data movement
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Memory wall
• Processor performance scales as 

technology scales, but the latency of 
DRAM access scales very slowly[2]

• Why? DRAMs are traditionally designed 
for high transistor density, whereas 
compute units are designed for high 
performance
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1. Hardware for Machine Learning: Challenges and Opportunities[2017], Sze et el.
2. Computing's energy problem (and what we can do about it)[2014], Mark H.

Data movement from DRAM is the most 
energy expensive operation[1]

Paves way to research on 
- when, where and how to compute
- improving memory bandwidth
- thinking of new memory technologies

- Neuromorphic circuits, SNN, PiM



What is memristor
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What is memristor
• Memristor is a hardware that can perform matrix multiplication with high speed

• By setting the voltage to the value of Ni and having the matrix W, the product of 
the matrix can be obtained by having the resistance Ri and reading the current

• Matrix multiplication is calculated in parallel => efficiency increase
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High Power Consumption



How to Improve memristor Power
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=> Remove Unnecessary Coefficients



How to Improve memristor Power

• Quantization
=> To reduce data bits and fractions

• Pruning
=> To reduce number of weights in 
learning

Data loss Accuracy

Solve This Problem Using ADMM

min F( {wi}Ni=1 , {bi}Ni=1) , Wi ꞓ Pi , bi ꞓ Qi
{wi},{wi}
=> Find the Optimum Conductance State Levels
=> Remove Unnecessary Coefficients

Accuracy
Fast and Parallel Computing
Power Usage
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Figure from AI and ML Accelerator Survey and Trends [2022], Reuther et el.

Current Accelerator Space



Data Center AI Accelerators
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• Requirements
• Train? Infer?
• The accelerators
• ASIC
• FPGA
• CGRA?
• PIM
• GPU

• Our observations

Figure from AI and ML Accelerator Survey and Trends [2022], Reuther et el.



Requirements for Data Center AI 
Acceleration

1. Latency (Service Level Objectives/Agreements[SLO/SLA])
2. Total Cost of Ownership (TCO)
3. Target select algorithms vs Target wide algorithm base
4. Multi-tenancy and Isolation (sometimes, mixed workloads)
5. Scalability and Future Proofing
6. Power consumption and Cooling
7. Programmability

25/08/23 CS-6354 12
Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.
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Train? Infer?

TRAINING
1. Frequent memory updates 

(forward and back propagation)
2. Large models and parallelization 

constraints – distributed training 
is limited by off-chip bandwidth

3. Wider operands
4. Training is experimentation
5. Compute intensive

INFERENCE
1. Weights are only read once
2. Parallelization is easier
3. High precision is not a "need"
4. Inference is a one-time activity
5. Not as intensive as training

25/08/23 CS-6354 13



Some Common Strategies

• High Bandwidth and High Capacity Memories to store weights
• Matrix multiply and Vector operation units

• Systolic arrays and (explicit) dataflow architectures

• Large on-chip memories (weight pinning)
• Data types of varied precision (tailored for AI)

• FP32, TF32, BF16, FP16, DLFLT16, UINT8, INT8 and maybe INT4
• Size of datatype influences power

• SIMD execution, MIMD execution, SIMT execution!

25/08/23 CS-6354 14
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Hardware and Software for AI/ML? 
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Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.

Safe to assume all the following works have a similar software stack.



DaDianNao - ASIC Accelerator
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• Training and Inference
• Tile based accelerator (recurring design choice)
• Uses Embedded DRAM (eDRAM) instead of 

SRAMs for density
• Weights are pinned to the eDRAM - limits off-

chip memory access.
• More space to memory rather than compute

• Memory is split between tiles for high 
bandwidth.

• More MACs than contemporary GPUs
• 36MB of eDRAM is insufficient for current ML 

model training.

DaDianNao: A Machine-Learning Supercomputer [ISCA 2014], Chen et al. 



Google TPU v1 and v4i - ASIC Inference 
accelerators

25/08/23 CS-6354 17

In-Datacenter Performance Analysis of a Tensor Processing Unit 
(ISCA 2017), Jouppi et al.
Ten lessons from Three Generations Shaped Google's TPUv4i (ISCA 
2021), Jouppi et al.

• Inference only accelerators targeted for MLP, RNN-LSTM and CNN (in 
v1 - 2015)

• Support for BERT, transformer encoder and LSTM decoder, Wave RNN 
(2020).

TPU v4i details:
• 128MB common memory allows reuse of weights during inference
• Inference in batches
• Systolic array Matrix Multiplication - 4x 128x128
• XLA compiler compiles the NN models.
• 322b VLIW ISA
• 175W TDP - Air cooled
• on-chip interconnect
• bf16/int8



Google TPU v2 and v3: ASIC Training 
Accelerators

25/08/23 CS-6354 18

v2 and v3 were built around the v1 inference chip.
1. Larger matrix multiply unit
2. High Bandwidth Memory with a vector scratch pad memory (SRAM)
3. Support for bf16 (Matrix Multiplication), fp32 (accumulation)
4. Activation pipeline is replaced with a more general purpose vector compute unit for training
5. On and off-chip networking for parallelization at scale. (2 cores per chip)
6. XLA compiler support. Same VLIW ISA

The Design Process of Google's Training Chips: TPUv2 and TPUv3 [2021], Norrie et al.



AI Accelerator on IBM Telum - ASIC
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AI Accelerator on IBM Telum Processor [2022], Lichtenau et el.

• On-chip accelerator for inference.
• Primarily for privacy and latency concerns
• All threads on the multicore can offload
• Interfaced shared L2 cache

• Coherency is maintained with firmware
• Like atomic instructions
• Suitable when models are large than L1

• Generic accelerator - for multiple models
• DLFLT16 support. Big Endian
• Firmware updates and Firmware controls offloading
• NNPA - Neural Network Processing Assist instructions
• No influence on power and clock frequency
• Accessed in a per request basis, no chaining.



Tesla Dojo: CPU with AI capabilities - ASIC

25/08/23 CS-6354 20
DOJO: The microarchitecture of Tesla's Exa-Scale Computer [2022], Talpes et al.

• Middle ground Between General Purpose CPU 
and Application Specific ASIC

• Uses a custom ISA tuned for ML
• Wide SMT Vector and Scalar functional Units
• Large SRAM
• Built to Scale
• NOC Router designed for throughput - relies 

more on data movement than local storage.
• VM, coherency and other poorly 

scaling features were omitted.

Related:
Tesla had its FSD chip - inference in Autonomous 
vehicles which is very similar to TPUv1.



Project Brainwaves - FPGA Inference 
Accelerator

25/08/23 CS-6354 21
A Configurable Cloud-ScaleDNN Processor for Real-Time AI [ISCA 2018], Fowers et al.

• FPGA based Neural Processing Unit (NPU)
• Configurable during compilation
• High Flexibility

• Batch Size = 1 - Low Latency
• DNN accelerator
• Single threaded SIMD ISA

• Spawns millions of primitive ops
• Minimal compiler support needed

• Matrix-Vector Multiplication and not Matrix-Matrix
• Dataflow architecture (instruction chaining)
• Model Pinning
• Sub-banked memory (Similar to DaDianNao)
• 125W on Stratix 10 FPGAs



Mipsology with Xilinx FPGAs - FPGA 
Inference Accelerator

25/08/23 CS-6354 22
Deep Learning Inferencing with Mipsology using Xililnx ALVEOTM on Dell EMC Infrastructure [2019]

• CNN Inference
• Software Stack which is aware of underlying FPGA
• Accelerates the common layers
• Pre-compiled FPGA binaries - optimzed for 

workload
• Zero FPGA knowledge required
• Scalable for N FPGA boards



Mozart: Reuse Exposed DataFlow - CGRA
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The Mozart Reuse Exposed Dataflow Processor for AI and Beyond [2022], Sankaralingam et al.

• Parallelism in Smaller Batches (N=4) - Accelerate features General to ML and not just DNN/CNN
• Reuse Data to maximum extent
• Streaming processor - gather and scatter-esque instructions
• Configurable Circuit Switch Compute Array (CSCA) - 8 FUs - Dataflow Architecture
• Software for configuration of CSCA based on the model.



SambaNova: Reconfigurable Dataflow - 
CGRA

• Train and Infer

• Accelerate multiple workloads (not just 
A/ML)

• Support pre/post processing of data

• ISA tuned for Dataflow architecture

• Reconfigurable DataFlow Unit(RDU) with 
interconnects

• PCU - Pattern Compute Unit - SIMD

• PMU - Pattern Memory Unit - SRAM

• Symbaflow software stack - TensorFlow to 
RDU

• Scalable
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Accelerated Computing with a Reconfigurable Dataflow Architecture[2021], SambaNova Systems.



Samsung Aquabolt-XL - HBM2 with PIM
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Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML accelerators and beyond [2021], Kim et al.

• Programmable PIM execution unit at the I/O boundary of a HBM2 bank
• Bank-level parallelism: access multi banks/FPUs in a lockstep manner
• Same formfactor as non-PIM counterpart - no redesign of DRAM core

• SIMD FPUs in the PIM block - Custom RISC 32b ISA
• Software stack to exploit new capabilities.



GPU - Graphics Processing Unit
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• Streaming Multiprocessor (SM)
• Dynamic programming Instructions (DPX)
• Tensor Memory Accelerator (Data transfer between local and global memory)
• Transformer Engine
• HBM3 and PCIe 5
• NVLink 4 - 900GBps (Multi GPU IO)
• NVSwitch - 13.6 Tbits/sec (Between GPUs in clusters, datacenters)
• SXM for high power and High Bandwidth (alternate to PCIe)

Clustering of Accelerators a key idea with models scaling.

NVIDIA H100 Tensor Core GPU Architecture [2022], Nvidia.



Cerebras Systems: Wafer Scale Engine 2
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Cerebras Systems: Achieving Industry Best AI Performance Through A Systems Approach [2021]

• Use the ENTIRE WAFER!
• Interconnects - Swarm
• No Multiplying by zero -

sparsity aware
• Sparse Linear Algebra 

Compute (SLAC) cores



Observations

• Custom software stack and not just hardware
• Exploit parallelism everywhere - Batched inference and distributed training
• Generic acceleration (Accelerator Startups)
• Abstraction of programming (Accelerator startups)
• Resurgence of explicit dataflow architectures.
• Large on-chip memories (memory wall is real: PIM solutions)
• Value pinning and reconfigurable processing cores/programmable cores
• On-chip interconnects and off-chip networks - Scalability with model 

scaling
• Custom data types
• Some on-chip accelerators due to customer needs.
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AI/ML accelerators for edge computing
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Key Metrics for edge/embedded AI/ML 
accelerators

• TOPS/W (Tera Operations per 
Watt)
• Accuracy 
• Quality of results
• Throughput – analytics on high 

volume data
• Latency – autonomous navigation

• Hardware cost
• Designing and Manufacturing

• Flexibility
• Due to evolving DNN models

• Scalability
• Privacy

25/08/23 CS-6354 30

Hardware for Machine Learning: Challenges and Opportunities[2017], Sze et el.



Eyeriss
• A very tiny low power AI 

accelerator chip ~278nW
• Is a spatial architecture 
• Use dataflow processing
• To facilitate efficient data reuse

• Focused on accelerating DNN
• Identified convolution is the 

most important 
• Takes 90% - 99% of computation 

and runtime
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Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks[2016], Sze et al.
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Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks[2016], Sze et al.



Eyeriss
• Dataflow implementation

• Output Stationary
• Weight Stationary 
• No Local data reuse 

• All the input and filter data come from 
global buffer

• All the partial sums and output written 
to global buffer

• Eyeriss proposed novel dataflow 
implementation
• Row-stationary approach
• High input reuse (filter, feature maps)
• Minimize partial sum accumulation 

cost

Eyeriss V2
• Designed for sparse and compact DNN 

models
• Proposed highly on-chip network, 

called hierarchy mesh
• To adapt to different amount of data-

reuse, bandwidth, and utilization

• 12.6X faster and 2.5X energy efficient 
than the original Eyeriss

25/08/23 CS-6354 32
Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al
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reduce data movement, storage, and computation, 
reuse as much as possible

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices [2018], Chen Y, et al



Minerva
• Designed to deploy DNNs in power-constrained environment
• Automated co-design flow

• Power reduction by using
• Fine-grained, heterogenous data type optimization
• Selective pruning
• Lowering SRAM voltage and domain-aware fault mitigation

25/08/23 CS-6354 33

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.
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Approximate to reduce power consumption within 
the required accuracy limits

Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators[2016], Reagen B. et al.



AI-RISC processor
• Introduces AFU: Tightly integrated 

AI Functional Units
• Inspired from history of adding 

instructions and functional units 
for commonly used operations

• Ex: floating-point arithmetic became 
popular and eventually we have 
floating point instructions and units 
inside the processor

• Reduces complexity required to 
design

• bus interfaces 
• separate ISA for a decoupled AI 

accelerator

25/08/23 CS-6354 34

AI-RISC: Scalable RISC-V Processor for IoT Edge AI applications[2022], Vaibhav V.
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• Such tight integration is good for edge but not 
for cloud
• While data-centers AI accelerators run 

models with more than 100 billion 
parameters

• tinyML has introduced much smaller 
models for edge devices i.e. around 100K

AI-RISC: Scalable RISC-V Processor for IoT Edge AI applications[2022], Vaibhav V.
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• Such tight integration is good for edge but not 
for cloud
• While data-centers AI accelerators run 

models with more than 100 billion 
parameters

• tinyML has introduced much smaller 
models for edge devices i.e. around 100K

Specialized ISAs are a good option

AI-RISC: Scalable RISC-V Processor for IoT Edge AI applications[2022], Vaibhav V.



AI-RISC Processor (contd.)

• Issues with ISA-extension
• Compatibility across the stack
• Need joint efforts by the community 
• Agile design infrastructure

• Issues with scalability
• Future work

• Tape-out AI RISC processor
• Integrate it with LiteX (open source 

SoC builder)
• End-to-end framework from DSL to 

GDSII layout
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Federated Learning in Edge

• Federated learning
- Preserve data-privacy
- Less data movement
- More efficient/less power 

consumption

- Can be implemented using 
coarse grained reconfigurable 
array (CGRA) that act like a 
bunch of mini-accelerators and 
can be dynamically configured 
for a particular use case

- Prof. David Atienza (EPFL)
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Observation

Critical path reduction
• Eyeriss identified the most common operation – convolution
• Identified the bottleneck -> it’s the data movement, solved it by exploring 

strategies of data-reuse
• Eyeriss V2 discussed about a novel NoC approach to keep the PE’s 

utilization high
• Minerva tried to optimize the MAC operations by compressing the data, 

pruning the data : remove the operations that don’t impact the results 
dramatically

• Find a way to integrate it with the existing or new framework
• AI-RISC is trying to build an end-to-end framework from quick tape-out of 

AI chips from the Domain specific language description
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Major dilemmas
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Generalization Specialization

Bring data to compute Bring compute to data
Specialized Components Specialized Instructions

Online learning Offline learning
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Decisions to be made based on trade-offs and workloads
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Design Space Exploration

• Aladdin
• A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space 

Exploration of Customized Architecture
• For all types of accelerator

• Scale-SIM (specially for AI accelerators)
• Accelergy – early stage energy estimator
• Timeloop – Performance simulator and DNN mapping tool
• PIMulator-NN - Simulator designed for PiM based NN accelerators
• Once you have designed, how do you integrate, so we also have

• Open source RISC-V toolchains
• ESP (more flexible than chipyard)
• Chipyard, Firesim
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One ring that unites and rules them all



Past and Present
• Cambrian explosion of Accelerators

• Novel techniques
• Solutions across the stack

• Diverse target application and workloads
• Limited works on data privacy
• Carbon footprint of computing! Large datacenters chugging 

power.
• Reinventing the wheel multiple times
• Missing a community effort (industry-academia gap)

• Proprietary solutions in the industry
• Novel ideas from academia unadopted
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Future
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• Larger models require more data (>540B parameters) - PIM is one solution
• Collaboration between within Academia and Industry

• Privacy aware ML models and architectures
• Homomorphic encryption
• Better ML algorithms and newer technologies - Spiking Neural Networks
• HW aware Neural Architecture Search (NetAdapt)
• Improved process nodes and processing paradigms (eFPGA, low power CGRAs).

• Environmental impact of Computing needs to be studied - global warming!
• Inference and training at scale
• The AI Accelerator Wall?

• Are we relying on performance through transistor scaling?
• What is the performance boost that we get from intelligent design?



Questions?



Thank you!


