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I. INTRODUCTION

The growing complexity in modern systems has placed sub-
stantial limits on our ability to comprehensively assess threats
and deploy security mitigations. As the industry is responding
to an endless stream of hardware and software attacks, it is
more clear than ever that, in addition to verifying software,
verifying if the underlying microarchitecture is secure and free
from exploitable vulnerabilities is critical to building reliable
systems. Modern microprocessors contain several microarchi-
tectural features that improve performance and save power. For
example, techniques like speculative execution enable signifi-
cant performance improvements, but also manifest as powerful
tools in an attacker’s toolbox allowing software checks to
be bypasses, rendering code that was considered previously
impermeable to software attacks vulnerable in the speculative
domain. The rising complexity in modern microarchitectures
not only necessitates significant time and effort dedicated to
verification, but also invariably allows complex corner case
vulnerabilities to escape. Therefore, reliable hardware security
verification techniques with better coverage are increasingly
considered to be a critical part of hardware design flows.

This work proposes Core Fuzzing, a microarchitectural
approach to security verification where the key attributes
of the processor microarchitecture are fuzzed at runtime to
expose previously unseen execution paths and discover poten-
tial vulnerabilities in the microarchitecture and the software
code that runs atop it. In software fuzzing, changing input
datasets exposes bugs in control-flow paths previously not
traversed. Similarly, by dynamically changing the underlying
microarchitectural configuration, our core fuzzing framework
seeks to expose previously unseen execution behaviors with
vulnerable side effects, in any given program. In particular,
given a design specification, our framework explores the entire
microarchitectural configuration space to identify a set of valid
configurations and fuzz the processor microarchitecture during
runtime to observe execution flows violating the set of well-
defined configurable security contracts. In contrast to existing
hardware security approaches that rely on static checkers or
multiple directed tests to expose microarchitectural bugs, core
fuzzing is able to examine several distinct microarchitectural
configurations for exploitable vulnerabilities through reconfig-
uration, while executing a single test program.

The key to core fuzzing is an out-of-order, superscalar, and
dynamically reconfigurable/morphable RISC-V core that can

sift itself through various configurations that feature different
branch predictor designs, instruction windows, cache organiza-
tions, and functional unit configurations, among other microar-
chitectural knobs that are traditionally fixed at design time and
hence remain inaccessible to security verification techniques
that are typically deployed post the design phase. Although
morphable and reconfigurable microarchitectures [4], [12],
[14], [15], [27] were proposed to improve performance over
traditional designs, by catering to diverse workloads, core
fuzzing, to the best of our knowledge, is the first approach to
leverage reconfigurable architectures for security verification.

In addition to the novel reconfigurable microarchitectural
approach, we create a configurable security contract/policy
enforced during verification. To this end, the reconfigurable
RISC-V core is equipped with an oracle that observes pro-
gram execution through performance counters and exposes
instructions to privileged software to perform targeted muta-
tion of microarchitectural parameters by setting control/status
registers. The core also implements processor-wide Dynamic
Information Flow Tracking (DIFT) [20], to track the flow of
sensitive information during execution and flag violations or
deviations from the security contract as the core morphs it-
self to different microarchitectural configurations and exposes
previously unseen execution paths.

Our approach is expected to substantially accelerate the pro-
cess of security verification and security-aware design space
exploration in comparison to state-of-the-art strategies that
are primarily simulation-based, while complementing existing
verification methods by exposing new bugs and vulnerabilities
in hardware and software.

II. TECHNICAL APPROACH

A. Design of the Reconfigurable Core

We use SonicBOOM [26], a superscalar, out-of-order, open
source, RISC-V core written in Chisel to prototype our idea.
We modify the design to make the core reconfigurable during
runtime and add additional logic to tag and track information
flow between individual hardware modules.

Figure 1 presents a representative block diagram of the
SonicBOOM core with design modifications. By design, the
SonicBOOM core is configurable during compilation, i.e., the
microarchitectural parameters are fixed at compile-time. As
shown in the figure, most microarchitectural modules within
the core are reconfigurable.
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Fig. 1. Representative Block Diagram of the Core Fuzzing tool microarchitecture

This work redesigns the core to be reconfigurable during
runtime with minimum overhead (performance, power, and
area), with the goal of exposing new execution flows that may
lead to vulnerable microarchitectural side effects. In particular,
we enable the reconfiguration of the modules based on the
values held in a new Control and Status Registers (CSR),
configureCSR, which specifies the current microarchitectural
configuration. Upon every reconfiguration, we will leverage
existing and newly added Hardware Performance Counters
(HPC) to track performance and security events of interest
to drive targeted mutation and generate reports.

The brain of the core fuzzing tool is the Oracle. The

Oracle is a 64-bit RISC-V core supporting privileged ISA
specification and inter-processor interrupts. The Oracle and
the reconfigurable BOOM core operate in unison in a mas-
ter/subordinate arrangement, where the Oracle continuously
monitors the HPCs to determine the execution flow pattern
and then trigger the reconfiguration of the BOOM core to
the next valid microarchitectural configuration as informed
by a specific mutation strategy. The validity of a particular
microarchitectural configuration is determined by a predefined
specification of the design space.

1) Dynamic Information Flow Tracking: Dynamic Infor-
mation Flow Tracking is implemented in the core fuzzing tool
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by creating tags/taints for the information flowing between
modules based on information privilege.

The green boxes on modules within the core in Figure 1
represent taint checkers. The taint checkers monitor the infor-
mation flowing between module interfaces. At every module
interface, they ensure that the output originating from a tainted
input is always tainted. Additionally, they check if there are
implicit flows between objects with different taints and flag
them. Implicit flows are flagged based on the strictness of
the security policy. Stateless channels of information leakage
are converted to stateful channels through tagging, allowing
implicit information leakage through stateless channels to be
identified. When a security policy violation is detected at one
or many checkers, it is propagated to one of the newly added
HPCs, which are continuously monitored by the Oracle that
raises a suitable exception.

The red boxes on the modules represent the initial tainting
and untainting units. Based on the tainting policy (memory
partitioning, privilege levels), the tainting unit will taint the
data brought into the Cache. Assuming a case where a specific
memory region is protected, the tainting unit will taint all
instructions and/or data brought into the instruction and/or
data cache from that memory region. Once the instruction
and its associated data are tainted, the taint propagation units
ensures that the taint is propagated until the instruction retires.
Upon the retirement of a tainted instruction, the associated
registers and data in the caches are untainted. This will often
lead to propagating the untainting process throughout the
pipeline requiring untainting units throughout the core. While
the MSHRs, Buffers, and Queues are stateful units susceptible
to side channels they do not need a special untainting unit since
it is unlikely for a retiring instruction to be stored in a buffer
or a queue.

B. Core Fuzzing Execution Flow

Figure 2 represents the execution flow of the Core Fuzzing
tool. The green processes in the flowchart are carried out by
the Oracle while the blue processes are carried out by the
reconfigurable core.

The Oracle and the reconfigurable SonicBOOM core share a
common memory region containing the test program. We start
by booting the Oracle and loading the test program in the
shared memory region. We then set up BOOM to execute the
test program by resetting it to the initial state and clearing out
the HPCs to avoid performance events from bootup polluting
the results. Upon receiving a trigger from the Oracle, the
BOOM core starts executing the test program in the chosen
privilege mode. The MRET instruction helps switch privilege
mode from the Machine mode, and SRET from Supervisor
mode. After setting up additional Machine/Supervisor CSRs,
the MRET instruction can be used to start execution in the
Supervisor mode, and SRET can be used to start execution
in the User mode. Depending on the testing scenario the
program can also be executed in the machine mode. Once the
test program execution begins, the BOOM core continuously
updates the performance counters, while executing the test

program. Whenever there is a trigger to reconfigure from the
Oracle, the core reconfigures while imposing a small downtime
before resuming execution. Meanwhile, the Oracle monitors
the HPCs at fixed intervals and decide if a reconfiguration is
necessary, and in particular, when there is a high chance of
exposing a microarchitectural vulnerability.

A test program runs N number of times, as required, to suc-
cessfully finish a fuzzing campaign. When no security policy
violations are detected, the BOOM core triggers an interpro-
cessor interrupt at the end of the campaign. The MEPC/SEPC
CSRs store the Exception Program Counter address. When
this matches with the address of the final instruction in the
test program, the Oracle generates a final report listing the
microarchitectural configurations, the observed information
flows, and performance counter values.

But when there is a violation detected at any point of testing,
the BOOM core will interrupt the Oracle and pause execu-
tion till the Oracle finishes collecting microarchitectural state
(IFT violations at module interfaces, and Performance counter
readings) and information about the violating instruction (PC).
Once the Oracle stores the microarchitectural state and the
PC in the shared memory region, it signals the BOOM core to
continue execution. The final report, in this case, is expected to
contain information about all policy violations and recommend
the secure microarchitectural configuration(s) for the given
security policy. Moreover, the report could also shed light on
bugs present in the software that manifest as microarchitectural
security policy violations.

III. PRELIMINARY RESULTS

In this section, we present results from a short core-fuzzing
run. The reconfigurable core in this experiment has the ability
to reconfigure its branch predictor from a TAGE predictor
to a GShare predictor during runtime. We demonstrate the
possibility of exposing previously unknown execution flows
with vulnerable microarchitectural side effects through recon-
figuration during runtime.

A. Threat Model

Since Core Fuzzing is a security verification tool targeted
to identify vulnerable microarchitectural configurations during
the design specification phase, our threat model includes all
discovered and currently undiscovered attacks which exploit
microarchitectural features. Core fuzzing uses Dynamic In-
formation Flow Tracking to detect unintentional or malicious
information flowing between microarchitectural modules dur-
ing verification. By enforcing a strong security policy through
information flow tracking, core fuzzing should be able to
identify most, if not all attacks exploiting microarchitectural
vulnerabilities.

The threat model also assumes that the DIFT mechanism
and its implementation are fully trusted and do not contain any
vulnerabilities. Moreover, the custom hardware performance
counters and the Oracle which monitor and infer execution
flows from the IFT mechanism are trusted. Having a trusted
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Fig. 2. Flowchart describing the Execution flow of the Core Fuzzing tool

Oracle, IFT mechanism, and monitoring mechanism validates
the authenticity of the results obtained from the tool.

B. Spectre-v1 and Branch Predictor Reconfiguration

The reconfigurable core has two branch predictor configu-
rations, a TAGE predictor and GShare Predictor. By default,
a 6-bank TAGE Branch Predictor is used by the core. We add
a 7th bank with 256 entries, a 16-bit global history, and a
7-bit tag which function as the Branch History Table when
the core reconfigures to use a GShare predictor. Currently,

the reconfiguration is triggered by the test program after
executing 4 Million cycles by updating a bit in a custom
reconfiguration CSR. The secret is extracted by performing
a FLUSH+RELOAD attack on the data cache which acts as a
side-channel.

We fine-tune the Spectre-v1 [16] attack targeted for RISC-
V and the SonicBOOM [19] core to be able to exploit a
GShare predictor. This Spectre-v1 code is tuned to be not
able to mistrain the default TAGE predictor in the core but
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can mistrain the GShare predictor. Once the GShare predictor
is mistrained, the core misspeculates on a conditional branch
leading to leakage of secret in the new configuration as shown
in Figure III-B.

As of this writing, we are working on implementing In-
formation Flow Tracking within the core. Once the core
is equipped with IFT, information leakage via stateful and
stateless side channels during unknown execution paths, the
misspeculation window in the presented example, will be
flagged.

Thi s e m u l a t o r compi l ed wi th JTAG Remote B i t b a n g
c l i e n t . To enab l e , use + j t a g r b b e n a b l e =1 .

L i s t e n i n g on p o r t 44209
m[0 x0x80002790 ] = want ( ” ) =?= g u e s s ( h i t s , dec , c h a r )

1 . ( 9 , 34 , ” ) 2 . ( 1 , 1 , )
m[0 x0x80002791 ] = want ( S ) =?= g u e s s ( h i t s , dec , char )

1 . ( 1 , 1 , ) 2 . ( 1 , 2 , )
m[0 x0x80002792 ] = want ( e ) =?= g u e s s ( h i t s , dec , char )

1 . ( 1 , 1 , ) 2 . ( 1 , 2 , )

T r i g g e r i n g a r e c o n f i g u r a t i o n
m[0 x0x80002793 ] = want ( c ) =?= g u e s s ( h i t s , dec , char )

1 . ( 6 , 99 , c ) 2 . ( 1 , 1 , )
m[0 x0x80002794 ] = want ( r ) =?= g u e s s ( h i t s , dec , char )

1 . ( 7 , 114 , r ) 2 . ( 1 , 1 , )
m[0 x0x80002795 ] = want ( e ) =?= g u e s s ( h i t s , dec , char )

1 . ( 8 , 101 , e ) 2 . ( 1 , 1 , )
m[0 x0x80002796 ] = want ( t ) =?= g u e s s ( h i t s , dec , char )

1 . ( 7 , 116 , t ) 2 . ( 1 , 1 , )
*** PASSED *** Completed a f t e r 14463565 c y c l e s
[UART] UART0 i s h e r e ( s t d i n / s t d o u t ) .

Fig. 3. Results from reconfiguring the core during Spectre-v1 attack.

IV. DISCUSSION

Reconfiguring the microarchitecture while running the test
program will expose bugs or vulnerabilities in hardware and
software that will not be apparent during regular execution
on a fixed microarchitecture. The shown example executes
for 14 Million cycles which is a short time to sift through
multiple microarchitectural configurations. As the size of the
test program increases, we have a large runtime window in
which we can fuzz through several microarchitectural con-
figurations exposing multiple unknown execution paths and
information leakage channels due to changes throughout the
pipeline. This can reveal unexpected interactions between
software and specific hardware features, highlighting potential
hardware vulnerabilities or inconsistencies. By observing the
impact of microarchitectural changes on software execution,
designers can identify and address hardware-related bugs, such
as incorrect memory ordering or faulty instruction pipelines.

Altering the microarchitecture can change the timing, de-
pendencies, and resource availability, potentially exposing race
conditions, synchronization problems, or subtle software bugs
previously masked by the original microarchitecture’s behavior
while providing an opportunity to test the software under
diverse hardware scenarios. Additionally, it helps test the
software’s resilience against unexpected events and errors. By
intentionally creating microarchitectural scenarios leading to

Fig. 4. Security Verification Approaches and the level of abstraction as
described by [7]

cache evictions, pipeline stalls, or incorrect branch predictions,
developers can evaluate how the software handles such events
while exposing unseen bugs, vulnerabilities, exception han-
dling issues, or potential security risks that may arise due to
the altered microarchitecture.

V. RELATED WORK

Generally, verification is performed at different abstraction
levels: from the software (application) level to the hardware
(RTL/Gate) level [1], [5], [21], [24] as shown in Figure
4. Formal verification techniques [2], [6], [8], [11], [13],
[22], [23] have been widely used owing to their robustness,
coverage, and ease of use. A mathematical model of the
design is verified against a set of defined properties using
a formal verification tool. Moreover, the formal verification
tools sometimes require modeling the hardware in specific
languages [3], [13], [22], [23], [25] that differ from the
commonly used HDLs (Hardware Description Language). The
survey by Erata, et al. [7] discusses in detail the multiple
hardware security verification approaches available.

Some works [9], [18] do not verify the RTL design but
use fuzzing-based approaches to generate targeted tests to
verify the Black-box CPU designs for security policy [10], [17]
violations. Unlike the previously mentioned static verification
techniques that used formal methods and solvers, methods like
Revizor [18] do not need access to the design specified in a
Hardware Description Language. The security of the design
can be verified either by simulations or by running tests on
actual hardware. The tool runs a fuzzing campaign guiding
successive rounds based on the results from the previous round
to maximize coverage and reduce effort.
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