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Abstract—In this Systematization of Knowledge(SoK) study,
we survey the Hardware architectures designed to accelerate
Artificial Intelligence(AI) and Machine Learning workloads(ML).
We explore two contrasting ML accelerator use cases, data center
and the edge in order to learn more about the different design
choices based on application. We summarize our learnings and
present a brief discussion about the current work in this space
and the open problems for the future.

I. INTRODUCTION

Machine Learning has been powering the rapid development
of Artificial Intelligence(AI) in the past decade. ML models
like Neural Networks(NN) have been successful in learning
and estimating high dimension functions. Thereby they are
widely used for face recognition, video analysis, object de-
tection and natural language processing. Internally NNs try
to mimic the functioning of the human brain. A NN consists
of small units called neurons which are connected together
to form a network. There are several types of NNs, some of
them are Deep Neural Networks(DNN), Convolutional Neu-
ral Network(CNN), Recurrent Neural Network(RNN), Long
short-term Memory(LSTM), Multi Layer Perceptron(MLP),
and Transformers. Figure 1 shows the structure of a DNN.

Fig. 1: a DNN schematic

NNs learn and estimate natural functions. For each contin-
uous function, an estimate is obtained using NN. The main
problem of NNs is that they require a lot of calculations,
especially when the problem is complex or the number of
network layers is large. Performing multiple complex calcula-
tions (matrix multiplications) in each layer increases the power
consumption of the system. Therefore, one of the challenges
for the widespread adoption of NNs is to provide a method to
reduce power consumption and memory accesses.

Moore’s law has been powering the scaling of modern
processors wherein for a given die size the speed of processors
increases 2X per year. Even though the transistor scaling helps
increase memory density and capacity, the memory latency

reduces only by 1.1X per year [14]. With time, the gap
between processor performance and memory access latency
is expected to increase further. The memories are designed
to increase the transistors’ density, whereas processing units
are designed for performance. A widely adopted solution is to
introduce caches but they are small and expensive. With the
increase in big data applications like NNs which perform rapid
memory accesses, the working sets are less likely to fit in the
cache. Figure 2 shows the energy spent in data movement.

Fig. 2: Energy spent in data movement

The inability of existing general-purpose compute to per-
form NN computations efficiently necessitated the need for
Domain-Specific Accelerators (DSA) [10]. DSAs are tailored
to execute the computations present in the trageted domain
or application. The DSAs targeted for ML workloads em-
ploy Dataflow architectures, exploit data locality and caching
techniques to reduce expensive memory accesses, exploit the
different parallelism which is exhibited by NNs (as shown
in 3) among several other optimizations. These optimizations
enable DSAs to be very efficient in accelerating the ML mod-
els when compared to contemporary general-purpose CPUs.
Nevertheless, the DSAs suffer from a major disadvantage of
being designed for a specific domain of applications. When
compared with a general-purpose CPU for a diverse workload,
the general purpose CPU will perform the best since the DSAs
are targeted architectures.

In this study we survey the state of the art ML accelerators
that have been designed, or even deployed. While surveying
the ML accelerator papers that were published in prominent
computer architecture conferences in the past 5-6 years, we
realized that we could classify the accelerators into two
categories, 1) Accelerators for the edge/mobile computing 2)
Accelerators for data center computing. Since datacenters and
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Fig. 3: Parallelism exhibited by Neural Networks

edge devices have contrasting requirements, we felt exploring
in these two directions would enable us to uncover interesting
design choices and novel hardware/software approaches for
Machine Learning workload acceleration. We first describe the
accelerators designed for data centers and edge devices. Then
we summarize the current work in the ML accelerator space.
Finally we list our prediction of where the research community
is headed towards and a few open problems that need to be
worked upon.

In summary, our study provides
• A taxonomy of the techniques and technologies powering

the modern ML accelerators
• Summarizes the key takeaways from the work that has

been done so far.
• Provides a the list of open problems that need solutions

from the research community.

II. ML ACCELERATORS IN THE DATA CENTER

The synergy between the large data sets in the cloud and
the numerous computers that power it has enabled a renais-
sance in Machine Learning [21]. As the ML models evolve
with a simultaneous increase in their user base, companies
have to either aggressively scale out their data centers or
accelerate the ML workloads to avoid scaling out. Since
scaling out is expensive compared to designing and deploying
accelerators in the existing data centers, we have witnessed
a plethora of Domain-Specific Accelerators being announced
and deployed in the past few years. These accelerators target
almost all possible ML models that were listed in I In this
section, we survey few of the accelerators that were choses
so as to represent each of the different underlying technology
platforms. We first state the differences between NL model
training and inference. Since data center accelerators have
different requirements compared to an edge device, we list
the requirements for data center ML inference accelerators.
We then classify the data center accelerators based on the
underlying technology and elucidate briefly on the novel ideas
in their design. We also indicate if the design decisions satisfy
or run afoul of the requirements listed earlier. Finally, we
summarize our observations.

A. Training and Inference

Training and inference are the 2 major phases in any
Machine Learning model. During training, the model is fed
with a curated dataset and its hyperparameters are tuned to
suit the target application. During inference, we use the trained
model to make predictions based on live input data which

is subsequently used by the application, usually in making
decisions.

The table below lists the major differences between the
training and inference of a ML model.

TABLE I: Training vs. Inference

S.No Training Inference
1 Frequent memory reads and

writes (Forward and back
propagation)

Requires only memory reads

2 Distributed training is limited
by off-chip bandwidth

Distributed inference is easier
to implement

3 High precision operators Lower precision operators do
not affect the accuracy

4 Training is experimental
(multiple iterations)

Inference is done only once
per input

5 Throughput bound Latency bound

The weights which are frequently read and updated dur-
ing the two phases of training, forward propagation, and
back-propagation. In inference, we only read the pre-trained
weights. Therefore, the architect can minimize the long-latency
off-chip memory accesses by storing the weights near the
processing unit. Machine learning models use a large number
of parameters; the latest Megatron-Turing NLG transformer
uses 530Billion parameters [3]. These large models require
large on-chip memories and compute power which is infeasible
on a single die. Hence, distributed training and inference
is practiced. In distributed training/inference, the machine
learning model is split into several partitions and then deployed
on a single/cluster of accelerators. Inference does not update
weights based on other parts of the model, but in training
there is a continuous update of weights during the process this
makes distributed training to be limited by inter-accelerator
communication. Training also makes use of higher precision
floating point arithmetic for better accuracy. But once the
training is complete, the floating point parameters are con-
verted into integers or floating point with lower precision by
quantization. Finally, the training operation is an experimental
process where the ML engineer tries fine tuning the parameters
to best-suit the target application. This necessitates multiple
training runs and a higher throughput. Inference is repeated
for every request. The overall compute required to train a
ML model is less than the compute accumulated over time
for inference. This makes inference a suitable target for
acceleration when compared to training.

B. Requirements for Inference in the Data Center

1 Latency; Service Level Objectives(SLO) and Service
Level Agreements(SLA).

2 Total Cost of Ownership (TCO) [18].
3 Degree of accelerator specialization.
4 Multi-tenancy, Mixed workload acceleration and Isola-

tion.
5 Operand Precision.
6 Scalability and Future Proof design.
7 Power consumption (TDP) and Cooling [18].
8 Programmability and Software Interface.
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1 A majority of applications which utilize the centers are
customer-facing. Therefore, inference latency is the most
important requirement considered during the design of the
accelerators. The architects utilize several techniques like
batching the requests [18], [21], [34], exploiting parallelism
in an individual request [12], weight pinning where the often
accessed weights are stored in on-chip caches reducing long
latency memory accesses [7], [18], [21], dataflow architectures
[7], [12], [18], [21], [24], [30], [34] and processing-in memory
[22].

2 The Total Cost of Ownership (TCO) is a factor of the
Capital Expense (CapEx) and the Operation Expense (OpEx).
The TCO is amortized over a period of 3-5 years. So, for 3
years the total TCO = CapEx + 3 x OpEx. Organizations
care about the Performance/TCO rather than just the raw
performance. Therefore, architects are required to consider the
TCO of the accelerator when designing them.

3 The accelerators designed for acceleration of ML models
in the cloud cannot be specific for only one type of ML
workload. Designing an accelerator to accelerate only one
workload requires individual ML accelerators for every ML
model which is infeasible. Hence, accelerators should be
designed to accelerate the common computations present
in multiple ML models rather than accelerating a specific
ML model in its entirety.

4 A good accelerator architecture should be able to si-
multaneously service the requests of multiple users (Multi-
tenancy), and simultaneously accelerate the inference of mul-
tiple models (Mixed workload). Additionally, the accelerators
should provide strong isolation between two users using two
different models in the cloud. Every organization has its own
proprietary ML models which cannot be exposed to a co-
resident user from a different organization. Likewise, it is
essential that co-resident users are not able to access each oth-
ers data. Furthermore, an accelerator which is too specialized
will not be able to accelerate inference of multiple models
3 . Hence, the architects should design the accelerators in

such a way that they can accommodate multiple tenants and
models while providing strong isolation between them.

5 After training and quantization, each ML model uses
operands with a precision which helps its accuracy. This
requirement forces accelerators to accommodate operations
on a set of different operand types.

6 The DNN workloads evolve with DNN breakthroughs
[18]. Since the ML field is rapidly evolving, there are new
and improved models being released and adopted quickly.
An accelerator which is targeted to one specific computation
will become obsolete when a newer ML workload shuns that
computation for any reason. Hence, accelerators should be
designed in order to accommodate the evolution of the ML
models.

7 Since the inference accelerators in the data center
will be serving requests continuously it is necessary that the
accelerators have a nominal Thermal Design Power(TDP).
While designing the TPUv4i [18], the architects decided to
keep the TDP at 175W so that it could be air-cooled in

the racks. If accelerators need expensive cooling, it increases
the overall OpEx due to the additional power provisioning
infrastructure required. Increased OpEx increases the TCO.

8 It is necessary that the accelerator should be easy to
program. If the ML engineers are not able to program their
ML models in a way to exploit the underlying architecture, the
whole exercise of designing accelerators becomes pointless.
Software interfaces which enable the ML engineer to work
less and translate the ML models from the ML engineer’s
representation to the accelerator’s representation with minimal
human effort will gain traction easily.

Training accelerators differ from inference accelerators in
the way that they are designed to solve the problems listed
in I. We indicate that the accelerator design either satisfies or
runs afoul of the requirements listed earlier by including the
circled number in the sentences like this 10

Note The requirements listed in this section were either
explicitly or implicitly stated in the data center ML
accelerator papers which we read [7], [8], [10]–[12],
[15], [17]–[24], [28]–[30], [32], [34], [38]. Since, the
most requirements are common across the designs we
do explicitly cite the paper(s) unless the requirements
specified in only that work.

C. Types of Accelerators

The several accelerators deployed in the data centers use
different technology platforms to accelerate ML models. One
of the most common approach to accelerating ML workloads
was to use data-flow architectures which differ from the
conventional Von-Neumann architectures which are control-
flow in nature. Since the ML accelerators are designed to
perform the same computation on a stream of input data with
limited control transfer, a data-flow architecture can use the die
area saved by not implementing complex control structures
can be used for implementing additional computation units.
The matrix multiply unit in the Tensor Processing Units [18]–
[21], [28], the Neural Function Unit (NFU) in DaDianNao
[7], the on-chip AI Accelerator in the IBM Telum CPU [23],
the Neural Processing Unit (NPU) in the FPGA accelerator
designed by Microsoft Brainwaves team [12], the Mozart
Accelerator [34] by SimpleMachines Inc., the Reconfigurable
Dataflow Unit(RDU) in SambaNova SN10 [30], and the entire
Wafer Scale Engine 2(WSE-2) by Cerebras Systems [24]
are examples of Data-flow computing approaches being used
at the heart of ML workload accelerators. Additionally, the
accelerators implement large on-chip memories to store the
weights as well as high bandwidth off-chip memories.

1) Application-Specific Integrated Circuit (ASIC): An
ASIC is designed and fabricated for one specific application
and does not allow you to reprogram or modify it after it is
fabricated. Many accelerators that have been deployed in the
data centers are ASICs due to their low power consumption
and performance.
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a) DaDianNao - A Machine Learning SuperComputer:
[7] DaDianNao is one of the earlier works which tried ac-

celerating ML models of 2014. DaDianNao introduces Weight
Pinning, a technique wherein the frequently accessed param-
eters; weights, are stored in the on-chip memory 1 . Weight
pinning reduces the need of accessing off-chip memory for the
weights during every epoch. The DaDianNao chip is split into
16 tiles and each tile had a Neural Function Unit (NFU), a
data-flow processor tuned for Multiply and Accumulate(MAC)
3 and its private 2MB on-chip memory. The 16 tiles also

had a common central on-chip memory of 4MB and uses
16W of power 7 . On-chip networks were implemented for
faster access of these memories. Additionally, the on-chip
memory was implemented as embedded DRAM and not as
SRAM owing to it better density. DaDianNao being an early
academic work suffered from multiple shortcomings. The
compute resources on the chip is low and would be insufficent
for the current large ML models 6 . DadianNao also did
not have a software infrastructure built for the accelerator
8 . Nevertheless, DaDianNao had a significant impact on the

design of the accelerators that were designed in the years after
2014.

b) Tensor Processing Unit(TPU) - Google: The TPUs
are multiple generations of ML training and Inference Ac-
celerators designed and deployed by Google in their data
centers. TPU v1 was designed to accelerate inference. Later
they designed two generations of training accelerators and then
designed the v4i inference accelerator.

c) TPUv1 and TPUv4i: [18], [21] Over the two genera-
tions of inference TPUs, the microarchitecture and architecture
of the accelerators have changed drastically. In the latest
inference accelerator, there is 128MB on-chip memory which
is used for weight reuse. The first generation of TPU had a
28MiB on-chip memory 1 . The v4i also has four 128x128
matrix multipliers for the batched inference while the v1 had
one 256x256 multiplier 3 6 . The v4i supports Google
BrainFloat16 and FP16 operands 5 and was designed to
accelerate the newer transformer ML models and RNN models
with heavy emphasis on the on-chip interconnect, and inter-
TPU interconnects 6 . v4i houses Tensor Direct Memory
Access(DMA) Engines which help hide the off-chip memory
access latencies 1 6 . v4i has HBM memory when compared
to the DDR3 DRAM in v1 1 6 . The XLA compiler
compiles the ML workloads such that they can exploit the
processing capabilities of the TPU 8 . TPU also makes use of
a 322b VLIW CISC ISA since longer instructions can reduce
the number of instruction memory accesses 8 . The large on-
chip memory on the v4i allows multi-tenancy and multiple
workload acceleration with software providing isolation 4 .
The TPU v1 consumed a nominal 75W of power and v4i
consumes 175W making it a suitable candidate for air cooling.

d) TPUv2 and TPUv3 [28]: The training TPUs, v2 and
v3 were built based on the architecture of v1 inference ac-
celerator. The major changes included changing the activation
pipeline into a vector compute unit to support multiple vector
computations, a larger on-chip vector scratchpad memory and

HBM main memory, a larger Matrix Multiplication Unit and
the introduction of on and off-chip networking for distributed
training. TPU v3 also introduced two TPUs in one accelerator
die enabling easier distributed training of larger models at
lower off-chip data transfer latencies. The TPUs also support
distributed training of models across the data center network.
The training chips make use of the same XLA Compiler and
VLIW ISA.

e) On-Chip AI Accelerator - IBM Telum [23]: IBM
introduced an on-chip AI accelerator for the Telum server
CPU. The accelerator interfaces with the fast shared L2 cache
and all cores have access to the AI inference accelerator 1 .
The accelerator does not use instruction chaining and server
inference requests one at a time. The on-chip accelerator
was chosen for privacy and data security 4 . The inference
accelerator is generic, uses DLFLT16(Deep Learning Float)
operands, and accelerates the MAC operations in the ML
models with a systolic array multiplier 3 6 5 . The ISA
of the CPU was appended with ML specific instructions, and
the firmware controls the offloading of instructions 8 . Since,
the accelerator is on-chip there are no additional costs in the
design and deployment 2 . Moreover, the accelerator does not
influence the power and clock frequency of the base cores 7 .

f) Tesla Dojo - ExaScale Training Supercomputer [38]:
Tesla introduced a CPU with AI compute capabilities. Instead
if using an on-chip or off-chip accelerator, the CPU uses an
ISA which is designed for ML applications 8 3 . The CPU
has wide Multi-threaded Vector units and Scalar units, and a
large SRAM 1 2 . The core has an on-chip Network router
which helps efficient scaling to large number of CPU clusters
for distributed training 6 . Similar to the case of IBM Telum,
there are no additional design and deployment costs since the
acceleration is part of the CPU and the software manages the
ML acceleration 2 7 .

2) Field Programmable Gate Array - FPGA: FPGAs are
flexible and configurable compute substrates which can be
configured to perform the required tasks. FPGAs are mostly
utilized for prototyping designs during the ASIC design cycle.
But, recently FPGAs have seen traction due to their ability
to be configured based on the workload required. This is
particularly interesting for ML acceleration since a one-time
investment in FPGAs which can be reconfigured to accelerate
any ML workload is cheaper when compared to an ASIC
which might become obsolete and is expensive to fabricate
2 3 6 . Modern FPGAs are power efficient and have de-

cently good performance 7 . Nevertheless, ASICs will always
dominate the performance/W metrics due to their application
specific nature.

a) Project Brainwave - Microsoft [12]: The Accelerator
uses FPGAs to implement a Neural Processing Unit(NPU), a
dataflow microarchitecture which is configurable during com-
pilation (parameters like operand precision can be configured)
5 . The NPU uses 125W of power 7 exploits parallelism

per request unlike the other accelerators which batch the
requests. Batching requests increases per request latency since
the scheduler should wait for sufficient requests before issuing.
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Exploiting per request parallelism is particularly important to
minimize latency 1 . The accelerator uses a single threaded
SIMD ISA and the software interface takes care of mapping
the compute onto the Matrix-Vector compute engines 8 .
Finally, the accelerator can be scaled to include as many NPUs
the model would need.

b) Mipsology with Xilinx FPGAs [17]: Mipsology is
software-based startup which provides software suites to map
the ML models onto Xilinx FPGAs. The common compu-
tations are accelerated and the programmer does not need
to know about the FPGA to implement their model on it.
The accelerators can be scaled to N FPGA accelerators cards
present in the server or the data center.

3) Coarse Grain Reconfigurable Array - CGRA: Similar
to FPGAs, CGRAs have compute units like tiny CPUs embed-
ded in a network of interconnects which can be configured to
suit the application. CGRAs have the similar advantages in
ML acceleration like FPGAs 2 3 6 7 , and they enable
designing dataflow architectures by reconfiguring the on-chip
network to route the operands to the execution units in a
streamlined fashion. The accelerators discussed in the section
are similar to CGRAs in the aspect that they are made of a
network of elementary compute units. But, they differ from
CGRAs by the fact that they have tiny memory units (to
alleviate latency) on the chip in addition to the compute units.
The on-chip network is configured using the software to route
the inference/training data during operation. The software also
takes care of the memory allocation and scheduling of the
requests so that the user does not have to know about the
underlying architecture.

a) Mozart - Reuse Exposed Dataflow [34]: Mozart
uses a tile based architecture of Configurable Circuit Switch
Compute Arrays (CSCA) each containing 8 Functional Units.
The functional units within the CSCA can be configured to
accelerate common computations present in ML workloads
3 using the software 8 similar to the way a CGRA is

configured. Mozat exploits parallelism using batches of size 4
1 . Mozart also tries to reuse the data fetched from main-

memory to a maximum extent (Re-use Exposed Dataflow)
and uses vector gather/scatter instructions for efficient memory
accesses.

b) SambaNova SN10 - Reconfigurable Dataflow [30]:
The SambaNova SN10 has compute and memory units spread
out interfaced with a programmable interconnect. The pro-
grammable interconnect in the dataflow architecture helps limit
the latency of inference since the compute units and their
interconnections can be chosen for shortest latency 1 . The
dataflow architectures implemented by the software during
compilation can be used to accelerate any workload (Graph
processing, SQL queries, Genomics) 3 8 . The weights are
stored in the memory unit and the compute units multi-stage
pipelines with SIMD capability. The power of the accelerator
lies in the software which orchestrates the entire dataflow.
In addition to providing opportunities to accelerate multiple
workloads, the SambaNova SN10 can accomodate multiple
applications and users with strong isolation with the help of

the software 4 .
4) Processing in Memory: Processing in Memory (PIM)

has emerged among the solutions to alleviate the constraints
imposed by the memory wall [36]. Since ML training and
inference require a lot of memory access, PIM is an attractive
solution for ML acceleration.

a) Samsung AquaBolt-XL: The Samsung Aquabolt-XL
is a HBM2 memory array with a programmable processing
unit embedded at the I/O boundary of a bank The processing
unit can access multiple banks in parallel and the the software
stack controls and schedules the operations performed on the
data fetched from the banks. The processing units contain
SIMD floating point addition and multiplication units which
can be used to perform MAC operations which is common
in ML workloads. Even though the processing units are not
powerful to perform computations at high throughput, tasks
like data pre/post processing can be offloaded to them.

b) Memristors: Memristor is a circuit capable of per-
forming matrix multiplication calculations at high speed [9].

The Figure 4 shows the model and the V-I curve of the
crossbar Memristor module.

Fig. 4: Memristor

By setting the voltage to the value of Ni and having the
matrix W , the product of the matrix can be obtained with
the help of the resistance Ri and reading the current. In
addition to the fact that the entire computation is performed in
memory (no expensive memory access), Matrix multiplication
is parallelized.

5) Graphic Processing Units (GPU): GPUs have been
dominating the ML acceleration space due their inherent paral-
lel nature. Initially GPUs were designed for high throughput.
But with the low latency requirement for inference applica-
tions, there have been multiple optimizations to reduce the
latency of GPUs making it a prime candidate for inference
acceleration.

a) NVIDIA Hopper GPU: GPUs have multiple stream-
ing multiprocessors which perform parallel matrix multipli-
cations. The requests are batched for high utilization and
better latency 1 . GPUs scale well since they accelerate the
matrix multiplication operations which are at the heart of
all ML workloads 3 6 . The software batches the requests
and schedules the execution 8 in addition to hosting multiple
users and providing isolation 4 . Moreover, the Hopper GPU
architecture also has a Tensor DMA engine, transformer
engine, custom dynamic programming instructions, support for
HBM3 memory, high speed Multi-GPU I/O, and high speed
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networking capabilities. These features help accelerate ML
workloads. NVIDIA also enables distributed training of large
models like transformers by clustering of GPUs present in the
entire data center 6 .

6) Wafer-Scale Compute:
a) Cerebras - Wafer Scale Engine 2: The Cerebras

Wafer Scale Engine - 2 (WSE2) is a single chip fabricated on
an entire silicon wafer. This allows easier scaling for larger
models and also alleviates the need for fast communication
between accelerator nodes which uses up large die area in
the other single-die accelerators 6 . The individual compute
units called Sparse Linear Algebra Compute (SLAC) cores
are connected with a high bandwidth on-chip programmable
interconnect fabric. The compute cores have on-chip SRAMs
for low latency and high throughput, are optimized for linear
algebra, and do not operate on zero values (sparsity) unlike
most of the other accelerators 3 . Using software the fabric in-
terconnect can be programmed to provide an optimal dataflow
path for every ML model 1 , 8 . The major limitation of the
WSE2 is that it requires a separate infrastructure for powering
and cooling it 7 2 unlike the other accelerators which use
PCIe slots present in conventional servers.

D. Observations

We list our observations from studying the architectural
choices and the requirements influencing them in the previ-
ously listed accelerators.

• Accelerators are a function of hardware and software.
One cannot exist without the other.

• Exploiting parallelism is the cornerstone to efficient
acceleration.

• Startups tend to design accelerators targeting a
large ML application space while established orga-
nizations accelerate only the workloads their prod-
ucts/customers need.

• Software abstracts the underlying architecture to the
programmer enabling rapid programmability.

• Dataflow architectures dominate the ML accelerator
space. Reconfigurable technologies like FPGAs and
CGRAs are gaining traction due to their configura-
bility.

• On-chip memory capacity increase is key to better la-
tency. Memory access latency is the Achilles’s heel to
acceleration.

• On-chip and off-chip interconnects play a major role
in allowing accelerators to scale.

• Accelerators use custom data types for efficient accel-
eration and for lower power consumption.

III. ML ACCELERATORS IN THE EDGE

We are witnessing a big bloom in smart devices in recent
years and it is expected to increase. Most of these smart
devices and embedded systems are integrated with sensors
and perform some kind of feature extraction. Due to the large
amounts of high-dimension data, different machine learning
techniques and AI methods are applied to extract and learn

hidden features. Applications like face recognition in mobile
phones, object detection in autonomous navigation, and video
analysis in surveillance heavily rely on CNNs and DNNs.
Speech recognition and natural language processing are other
branches of AI deployed in edge devices like mobile phone
applications and voice assistants etc.

Some of the above mentioned applications require real-time
responses and hence are latency-critical in nature. Therefore,
computations are brought closer to the edge to reduce the la-
tency of operations. However, edge devices face another issue
of operating in a power-constrained environment as most of
them are battery-operated. Unlike data centers where thermal
cooling drives the research for low-power accelerators, edge
devices require accelerators that utilize low-power techniques
to lower the dynamic power consumption.

As established earlier in Section I, data movement is the
most power-expensive step especially when the data is stored
far from the compute logic [37]. We also saw that the most
frequently used operation in AI/ML is MAC (Multiply and
Accumulate). The limited power budget and the nature of the
most-common operation i.e., MAC, open up many directions
to rethink the way data is stored and used. First, to reduce
data movement, keep the more frequently used data near the
compute logic. Second, reuse the data already available in the
logic to reduce memory accesses. Third, reduce the amount of
computation itself.

Fig. 5: Dataflows in NN acceleraotrs
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Researchers have come up with different dataflows to lever-
age maximum data reuse as shown in 5 and listed below:

• Weight Stationary (WS): Model weights once learnt
are fixed and can be stored in the register file of the
processing element. All the inputs and partial sums can
move through the global buffer.

• Output Stationary (OS): Another approach is to keep
the output in the register file, which can then accumulate
the partial sums and avoid their movement

• No Local Reuse (NLR): With strict space constraints,
small registers can’t hold local values. Therefore, all the
local space can be used as the global buffer.

• Row Stationary (RS): Proposed in [5], maximizes input
data reuse (i.e. filters and feature maps) and at the same
time minimizes partial sum accumulation cost. These
minimize the total energy consumption.

Eyeriss [5] shows that when compared with other dataflows
such as OS, WS, and NLR using AlexNet as a benchmark,
the RS dataflow is 1.4× to 2.5× more energy efficient in
convolutional layers, and at least 1.3× more energy efficient
in fully-connected layers for batch sizes of at least 16. As
we see, just changing the dataflows impacts the overall
energy consumption of the accelerators. This implies that the
dataflows can further be optimized based on the CNN/DNN
layers and characteristics of input data, filter, and feature maps.
Furthermore, the PEs with larger sizes will always help reduce
data movements and frequent memory accesses, given you
have enough area on the chip.

The other important aspect when improving the perfor-
mance of accelerators at the edge is accuracy. When we want
to improve accuracy through the use of DNNs, we will still
have problems with the lack of resources if we use this on-
device method [4]. It is possible to come up with a solution
to this problem by using lightweight or simpler models [16],
[25]. Since edge nodes are not as powerful as cloud nodes,
we need to minimize the number of computations and keep
the model size small by using as few trainable parameters as
possible [27].

To meet the energy requirements of battery-operated de-
vices, the designers can use techniques such as data quanti-
zation and pruning without compromising much on accuracy.
Minerva [31] proposes an automated co-design approach
across the algorithm, architecture, and circuit levels to
design and deploy efficient DNN hardware accelerators in
power-constrained environments. It consists of five stages:

• Stage 1 explores and finalizes the baseline machine
learning algorithm;

• Stage 2 explores microarchitectural optimizations using
Aladdin [35] to fix the memory bandwidth, loop level
parallelism, clock frequency, etc;

• Stage 3 analyzes data type precision requirements and
performs data quantization;

• Stage 4 analyzes pruning statistics of the algorithm and
applies operation pruning;

• Stage 5 introduces domain-aware fault mitigation tech-
niques that facilitate SRAM supply voltage reduction.

Expanding further on Stage 4, an important observation here
is the data and AI models are sparse. There are certain weights
in the neural network layers that are just zero or insignificant.
Getting rid of these insignificant weights not only reduces
storage issues but also reduces unnecessary data movements
thereby saving power. [40] also came up with pruning methods
for each layer that is guided by the energy consumption of a
CNN.

We have talked about two very important ways to design an
AI accelerator for the edge. One focused on maximum data
reuse thereby reducing power, and the other tried to apply
optimization methods such as quantization and pruning to
reduce the overall power consumption. All of these techniques
cannot be fixed for every model, CNNs and DNNs come with
varied model sizes, and the amount and type of data they
operate on are diverse. We need solutions that are more
flexible with input data, NN models, and sparsity. Eyeriss v2
[6] is one such DNN accelerator architecture that has a highly
flexible on-chip network called “hierarchical mesh” to address
different data types, shapes, sizes, and sparsity of different
layers. It adapts to the different amounts of data reuse and
bandwidth requirements to better utilize computing resources.

Fig. 6: Where to accelerate?

Accelerating data-intensive and parallel workloads defi-
nitely helps overcome the memory wall, reduces overall energy
consumption, and lowers the latency of operations. However,
where to accelerate is still a question of concern; be it in the
memory, near memory, on the chip as a co-processor, or as a
functional unit in the processor core as shown in 6. Similar to
Dadiannao [7], [39] also advocates having functional units in
the processor core termed as “Processing with memory”. The
only difference is that the former used the idea to accelerate
NN models in data-center servers whereas the latter proposed
the idea for edge processors. The key idea here is to have
smaller models (100K parameters as compared to around
billions of parameters in data-center servers) that can fit in
on-chip AFUs (AI functional units). There are communities
like tinyML that push towards reducing the ML model sizes
to cater to the resource constraints of embedded processors.

Moreover, edge computing does not only indicates comput-
ing on a small device, but it can also have computing shared
anywhere among cloud nodes, edge servers, and edge nodes.
Concepts like fog computing, mist computing, and in-network
computing are also becoming popular. Federated learning is
another edge computing method that allows models to be
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trained on client-send and share the final models and gradients
with the server. The server then generalizes the model and
applies the training from all the clients to improve the quality
of results for each client. This is an effective approach to
protect clients’ privacy from various adversarial attacks.
However, the management of existing devices in terms of
computing between the end nodes and the server is still a
challenge that needs to be dealt with efficiently, depending on
the application at hand.

To summarize, the key metrics for building edge/embedded
AI/ML accelerators are:

1 Reduced total power consumption i.e. high TOPS/W
(Tera Operations per Watt)

2 Good quality of results with the required accuracy
3 High throughput for applications that deal with high-

volume data analytics
4 Low latency for real-time applications
5 Low hardware cost for designing and manufacturing
6 High flexibility due to evolving AI/ML models and

workloads
7 Should address privacy concerns because most edge de-

vices operate on sensitive personal data
Many startups are emerging like SIMa.ai, Esperanto Tech-

nologies, Hailo.ai, etc to design hardware specialized for edge
AI. Several other edge AI processors like GAP8 of Greenwave
Technologies [1] have emerged from the open-source PULP
(Parallel Ultra Low Power) platform of RISC-V. [2] shows
a joint effort between RISC-V and tinyML communities to
develop a configurable edge AI accelerator that leverages the
best aspects of RISC-V and eFPGA (embedded FPGA) in an
open-source hardware design setup. Nonetheless, coming up
with a new accelerator for a specific application and workload
is always a challenge which we discuss in the next section.

IV. DESIGN SPACE EXPLORATION

Developing any hardware requires a large number of man-
hours and there is a hefty cost associated with designing,
verifying, manufacturing, and testing any hardware. This im-
plies one should not fix hardware for just one application or
AI model. Since, the workloads, applications, and even AI
models are continuously evolving. The hardware accelerators
should be scalable, flexible, and programmable. However, this
poses an issue for optimization, designing solutions for the
required computation is much more efficient than designing
a generalized architecture. Another aspect discussed in the
previous sections is where should the acceleration happen,
i.e. near the memory or near the processor. There are no
standard metrics to compare to accelerators because there are
so different in terms of the algorithm used, target applications,
and computing resource constraints. We observe the following
an accelerator architect can face:

• Generalization vs Specialization
• Bring data near compute unit vs Bring compute near data
• Specialized components vs Specialized instructions
• Online learning vs Offline learning

An exhaustive design space exploration can be a solution to
this dilemma. However, researchers need more standardized
and open-source frameworks to compare and integrate their
accelerators with the existing hardware. We do see efforts
in this direction; ESP [26] is an open source platform to
integrate heterogenous SoCs, this has different abstraction
levels and facilitates ease of usage for ML engineers as well;
ScaleSim [33] is another simulator specially developed for
CNN accelerators. There are many other simulators designed,
however, most of them are developed in-house and therefore
have low fidelity and low adoption by the community. There
is no one ring that fits all, we need to drive combined efforts
from software and hardware community to bridge the gap and
develop standardized simulators framework and platforms.

V. PAST AND PRESENT

As of date there has been several hundred accelerators being
built and deployed for acceleration multiple different ML
workloads. Even though few accelerators provide innovative
solutions, a significant bunch of accelerators either make incre-
mental improvements and changes to the previously provided
innovative solutions. With large organizations funding a major
portion of ML accelerator research, the resulting products
are proprietary leading to multiple groups reinventing the
wheel. Moreover, software support for the architecture has
been indispensable to success of the designed accelerators.
Academic works which lack sophisticated software support
albeit being replete with novel ideas rarely get adopted.
Additionally, the privacy of the user data in the cloud ac-
celerators and the security of these accelerators have not been
extensively studied. Overall, the ML accelerator research space
worked as individual groups spending time and money on
similar solutions and lacked a community bridging industry
and academia.

VI. FUTURE

With processor and memory scaling being heavily limited
by the limits of physics, and the inexorable growth in ML
model sizes we are a point where we need innovative hardware
and software (ML model) design to avoid hitting the acceler-
ator wall [13]. Collaborations between academia and industry
could aid the rapid adoption of privacy preserving machine
learning solutions, spiking neural networks, and architecture
solutions like embedded FPGAs, and newer process nodes.
Software-Hardware co-design involving architects and ML
researchers will exploit the best of both worlds. We also
expect the adoption of Hardware Aware Neural Architecture
Search techniques where a ML model with information about
the underlying hardware, tunes the application’s ML model
to exploit the architecture. Finally, we also expect that the
computing community will study the environmental impact of
using power-hungry data centers for computation and come
up with solutions which help preserve the world to reap the
results of current technological advances.
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VII. CONCLUSION

In this SoK study, we summarized the acceleration solutions
currently present and then listed few open problems than needs
to solved by the commmunity. Even though our study is not
exhaustive, we have tried to cover a large sample space in-
order to inform the reader about the large body work in this
space.
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